Fall 2020 ENG 5300 Computer Assignment name:Chris Collins

You must show all work to receive full credit. All work is to be your own.
Be neat and organized, and use correct notation.
Due date: September 9 18:40
The purpose of this assignment is to get familiar with the gradient search for finding points of local extrema for functions of the form $z=f(x, y)$ with continuous partial derivatives.

The following paragraph is quoted from a classical text Linear and Nonlinear Programming, $3^{\text {rd }}$ ed., 2008, by David G. Luenberger and Yinyu Ye, §8.6, pages 233 and 234:
"One of the oldest and most widely known methods for minimizing a function of several variables is the method of steepest descent (often referred to as the gradient method). The method is extremely important from a theoretical viewpoint, since it is one of the simplest for which a satisfactory analysis exists. More advanced algorithms are often motivated by an attempt to modify the basic steepest descent technique in such a way that the new algorithm will have superior convergence properties. The method of steepest descent remains, therefore, not only the technique most often first tried on a new problem but also the standard of reference against which other techniques are measured."

As was discussed in class, the method of steepest ascent/descent is defined by the following iteration

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k} \pm \alpha \nabla f(x, y)
$$

Where $\alpha>0$ and $\mathbf{x}_{k}=\left\langle x_{k}, y_{k}\right\rangle$. The following example illustrates how to apply gradient search to find local minima or local maxima of a given function $z=f(x, y)$.

Consider the surface given by $z=f(x, y)=\frac{x\left(x^{2}-4\right)\left(y^{2}-4\right)}{1+x^{2}+y^{2}}, \quad-4 \leq x \leq 4,-4 \leq y \leq 4$

- Perform 64 iterations of gradient search for local maxima starting from $(1,3.2)$, with $\alpha=0.04$.
- Perform 81 iterations of gradient search for local minima starting from $(-1,3.2)$, with $\alpha=0.03$.

Find the gradient vector first (by hand or using MAPLE).

$$
\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle=\left\langle\frac{\left(y^{2}-4\right)\left(7 x^{2}+x^{4}+3 x^{2} y^{2}-4-4 y^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{2}}, \frac{2 x\left(x^{2}-4\right) y\left(5+x^{2}\right)}{\left(1+x^{2}+y^{2}\right)^{2}}\right\rangle
$$

For gradient ascent, starting from $(1,3.2)$, with $\alpha=0.04$, run the following MatlaB code:

```
[x y]=meshgrid(-4:0.1:4,-4:0.1:4); % boundaries and resolution of the grid
z=x.*(x.^2-4).*(y.^2-4)./(1+x.^2+y.^2); % the z=f(x,y) given in the example
mesh(x,y,z); axis image; % Draws the surface
options = {'Interpreter','latex','FontSize',14}; % uses LATEX for labeling
xlabel('$x$-axis',options{:}); ylabel('$y$-axis',options{:});
title('Ascent',options{:});
hold on
p=[1; 3.2]; % starting point given in the example
plot(p(1,1),p(2,1),'or','MarkerSize',10); % red circle label for starting point
for i=1:64
    x=p(1,size(p,2)); % so that you can copy/paste fx from MAPLE
    y=p(2,size(p,2)); % so that you can copy/paste fy from MAPLE
    fx=(y^2-4)*(7*x^2+x^4+3*x^2*y ^2-4-4*y^2)/(1+x^2+y^2)^2; % from MAPLE
    fy=2*x*(x^2-4)*y*(5+x^2)/(1+x^2+y^2)^2; % from MAPLE
    p=[p p(:,size(p,2))+0.04*[ fx ; fy ]]; % the only line that really maters
    x=p(1,:); % so that you can copy the z component in stem3 from above
    y=p(2,:); % so that you can copy the z component in stem3 from above
    plot(p(1,:),p(2,:),'k>-','MarkerSize',7); % the xy-plane \nablaf path towards local max
    stem3(p(1,:),p(2,:),x.*(x.^2-4).*(y.^2-4)./(1+x.`2+y.^2),'b-+'); % artsy cosmetics
    drawnow;
```

end

Matlab animates the iterations and stops with the following picture on the left. Rotate the picture in 3D using mouse for from-the-top view, as shown on the right.

For your assignment, you have to modify the code highlighted in yellow according to your:

- $z=f(x, y)$.
- Boundaries of the grid.
- Step-scaling scalar α.
- Gradient ascent $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha \nabla f(x, y)$. Gradient descent $\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha \nabla f(x, y)$.
- Number of iterations.

The following is a terse (without fancy $\mathrm{HT}_{\mathrm{E}} \mathrm{X}$ labels) version of the ascent MATLAB code.

```
[x y]=meshgrid(-4:0.1:4,-4:0.1:4); % this is a TERSE VERSION of ASCENT code
z=x.*(x.^2-4).*(y.^2-4)./(1+x.^2+y.^2);
mesh(x,y,z); hold on
x=1; y=3.2; % Starting point
plot(x,y,'or','MarkerSize',10); % red circle label for starting point
for i=1:64
    fx=(y^2-4)*(7*x^2+x^4+3*x^2*y^2-4-4*y^2)/(1+x^2+y^2)^2; % from MAPLE
    fy=2*x*(x^2-4)*y*(5+x^2)/(1+x^2+y^2)^2; % from MAPLE
```



```
    plot(x,y,'k<-'); drawnow;
end
```

The following Matlab code generates a plot of gradient field with level curves in 2D on the left and in 3 D on the right. The purpose of this visualization is to reinforce the fact that the gradient is perpendicular to level curves.
[x y]=meshgrid ($-4: 0.3: 4,-4: 0.3: 4$); $\quad \%$ use dimensions in part 1 on next page $\mathrm{z}=\mathrm{x} . *\left(\mathrm{x} .{ }^{\wedge} 2-4\right) . *\left(\mathrm{y} .{ }^{\wedge} 2-4\right) . /\left(1+\mathrm{x} .{ }^{\wedge} 2+\mathrm{y} .{ }^{\wedge} 2\right)$; $\%$ use $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ from part 1 on next page [px,py] = gradient(z,2,2);
subplot(1,2,1); contour ($z, 37$), hold on; axis image; quiver ($p x, p y$);
subplot(1,2,2); contour3(x,y,z,76); axis image; hold on; quiver(x,y,px,py);

1. Run gradient ascent, starting at (-1.6, 0.3), with $\alpha=0.5$ and 24 iterations, for the surface

$$
z=f(x, y)=\left(x^{5}+y^{5}\right) e^{-\left(x^{2}+y^{2}\right)}, \quad-3 \leq x \leq 3,-3 \leq y \leq 3
$$

2. Modify the following code to plot the level curves and the gradient field in part 1
```
[x y]=meshgrid(-4:0.2:4,-4:0.2:4); % use dimensions in part 1
z=x.*(x.^2-4).*(y.^2-4)./(1+x.^2+y.^2); % use z=f(x,y) from part 1
[px,py] = gradient(z,2,2);
subplot(1,2,1); contour(z,37), hold on; axis image; quiver(px,py);
subplot(1,2,2); contour3(x,y,z,37); axis image; hold on; quiver(x,y,px,py);
```

3. Run gradient descent, starting at (1.4, -0.2), with $\alpha=0.08$ and 64 iterations, for the surface

$$
z=f(x, y)=\left(x^{5}+y^{5}\right) e^{-\left(x^{2}+y^{2}\right)}, \quad-3 \leq x \leq 3,-3 \leq y \leq 3
$$

4. Run gradient ascent, starting at ($-1.2,0.0$), with $\alpha=0.1$ and 419 iterations, for the surface

$$
z=f(x, y)=\left(x^{5}+y^{5}\right) e^{-\left(x^{2}+y^{2}\right)}, \quad-3 \leq x \leq 3,-3 \leq y \leq 3
$$

Explain why the algorithm "stalls" on the plateau and does not climb the mountain.
5. Run gradient ascent, starting at (1.3,-1.2), with $\alpha=0.07$ and 128 iterations, for the surface

$$
z=f(x, y)=\cos \left(\left(x^{2}+y^{4}\right)^{\frac{1}{7}}\right) e^{-\left(x^{2}+y^{2}\right)}, \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

Explain why the algorithm misbehaves (goes crazy) near the optima.

