You must show all work to receive full credit. No (8). All work is to be your own. Date: October 7 Be neat and organized, and use correct notation. All of these problems appear on Test 1. 18:40-19:55

1 §10.1 Line Integrals

1. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=[z, x, y], C: \mathbf{r}=[\cos t, \sin t, t]$ from $(1,0,0)$ to $(1,0,4 \pi)$.

10 points
2. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=\left[e^{x}, e^{y}, e^{z}\right], C: \mathbf{r}=\left[t, t^{2}, t^{2}\right]$ from $(0,0,0)$ to $(2,4,4)$.
3. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=[x-y, y-z, z-x], C: \mathbf{r}=[2 \cos t, t, 2 \sin t]$ from $(2,0,0)$ to $(2,2 \pi, 0) . \quad 10$ points

Hint: $\cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta)$ and $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$
4. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=\left[x^{2}, y^{2}, z^{2}\right], C: \mathbf{r}=\left[\cos t, \sin t, e^{t}\right]$ from $(1,0,1)$ to $\left(1,0, e^{2 \pi}\right)$.

10 points
5. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=\left[e^{-x}, e^{-y}, e^{-z}\right], C: \mathbf{r}=\left[t, t^{2}, t\right]$ from $(0,0,0)$ to $(2,4,2)$.
6. §10.1 Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=[x+y, y+z, z+x], C: \mathbf{r}=[2 t, 5 t, t]$ from $t=-1$ to 1.
7. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=[x,-z, 2 y]$, , from $(1,2,3)$ straight to $(3,2,1)$.
8. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=[x-y, y-z, z-x], C: \mathbf{r}=[2 \cos t, t, 2 \sin t]$ from $(2,0,0)$ to $(2,2 \pi, 0)$.
9. §10.1 Line Integral. Work done by a force. Evaluate the line integral, where C is the given curve. (Show the details.)

$$
\int_{C}(y+z) d x+(x+z) d y+(x+y) d z, C \text { is the line segment from }(1,0,1) \text { to }(0,1,2)
$$

10. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.)

10 points $\mathbf{F}=\sin x \mathbf{i}+\cos y \mathbf{j}+x z \mathbf{k}, C: \mathbf{r}(t)=t^{3} \mathbf{i}-t^{2} \mathbf{j}+t \mathbf{k}$ from $(0,0,0)$ to (1, $-1,1$).

2 §10.2 Path Independence of Line Integrals

1. $\S 10.2$ Path-Independent Integrals. Show that the form under the integral sign is exact in the space and evaluate the integral. (Show the details of your work).

10 points

$$
\int_{(2,3,0)}^{(0,1,2)}\left(z e^{x z} d x+d y+x e^{x z} d z\right)
$$

2. $\S 10.2$ Check for Path Independence and, if independent, integrate from $(0,0,0)$ to (a, b, c). (Show the details of your work.) 10 points

$$
x y z^{2} d x+\frac{1}{2} x^{2} z^{2} d y+x^{2} y z d z
$$

3. $\S 10.2$ Check for Path Independence and, if independent, integrate from $(0,0,0)$ to (a, b, c).
(Show the details of your work.)
10 points

$$
e^{y} d x+\left(x e^{y}-e^{z}\right) d y-y e^{z} d z
$$

4. $\S 10.2$ Path Independent Integrals. Show the form under the integral sign is exact in space and evaluate the integral. Show the details of your work.

10 points

$$
\int_{(0,0,0)}^{(1,1,0)} e^{x^{2}+y^{2}+z^{2}}(x d x+y d y+z d z)
$$

5. $\S 10.2$ Show the form under the integral sign is exact in space and evaluate the integral. Show the details of your work.

10 points

$$
\int_{(5,3, \pi)}^{(3, \pi, 3)}(\cos y z d x-x z \sin y z d y-x y \sin y z d z)
$$

6. $\S 10.2$ Check for Path Independence and, if independent, integrate from $(0,0,0)$ to (a, b, c).
(Show the details of your work.)
10 points

$$
\left(\cos \left(x^{2}+2 y^{2}+z^{2}\right)\right)(2 x d x+4 y d y+2 z d z)
$$

7. $\S 10.2$ Show that the form under the integral sign is exact in space and evaluate the integral. Show the details of your work.

$$
\int_{(0,0, \pi)}^{\left(2, \frac{1}{2}, \frac{\pi}{2}\right)} e^{x y}(y \sin z d x+x \sin z d y+\cos z d z)
$$

8. $\S 10.2$ Show that the form under the integral sign is exact in space and evaluate the integral. Show the details of your work.

10 points

$$
\int_{(0,1,0)}^{(1,0,1)}\left(e^{x} \cosh y d x+\left(e^{x} \sinh y+e^{z} \cosh y\right) d y+e^{z} \sinh y d z\right)
$$

9. §10.2 Show that the field $\mathbf{F}(x, y, z)=y z e^{x z} \mathbf{i}+e^{x z} \mathbf{j}+x y e^{x z} \mathbf{k}$ is conservative and evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along $C: \mathbf{r}(t)=\left(t^{2}+1\right) \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}+\left(t^{2}-2 t\right) \mathbf{k}, 0 \leq t \leq 2$. Show the details of your work.

10 points
10. $\S 10.2$ Show that the field $\mathbf{F}(x, y, z)=\sin y \mathbf{i}+(x \cos y+\cos z) \mathbf{j}-y \sin z \mathbf{k}$ is conservative and evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along $C: \mathbf{r}(t)=\sin t \mathbf{i}+t \mathbf{j}+2 t \mathbf{k}, 0 \leq t \leq \frac{\pi}{2}$. Show the details of your work.

10 points

3 §10.4 Green's Theorem in the Plane

1. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where $\mathbf{F}=\left[x^{2}+y^{2}, x^{2}-y^{2}\right], R: 1 \leq y \leq 2-x^{2}$. Sketch R.

20 points
2. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where $\mathbf{F}=[2 x-3 y, x+5 y], R: 16 x^{2}+25 y^{2} \leq 400, y \geq 0$

20 points
Hint: You might find the following identities useful:

$$
\int \sqrt{a^{2}-u^{2}} d u=\frac{u}{2} \sqrt{a^{2}-u^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{u}{a}+C \text { and } \int \frac{u^{2} d u}{\sqrt{a^{2}-u^{2}}}=-\frac{u}{2} \sqrt{a^{2}-u^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{u}{a}+C
$$

3. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where $\mathbf{F}=\left[x^{2} e^{y}, y^{2} e^{x}\right], R$ the rectangle with vertices $(0,0),(2,0),(2,3),(0,3)$
4. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem.

Use Green's Theorem to evaluate
20 points

$$
\oint_{C} 3 x^{2} y^{2} d x+2 x^{2}(1+x y) d y
$$

where C is the circle shown.

5. §10.4 Evaluation of Line Integrals by Green's Theorem.
(a) Verify the identity $\nabla \cdot \nabla \times \mathbf{F}=0$

4 points
(b) Verify the identity $\nabla \times \nabla f=\mathbf{0}$ 4 points
(c) Using Green's Theorem, evaluate $\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where $\mathbf{F}=\operatorname{grad}\left(x^{3} \cos ^{2}(x y)\right), R: 1 \leq y \leq 2-x^{2} . \quad 12$ points
6. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where $\mathbf{F}=\left[x^{2} y^{2},-x / y^{2}\right], R: 1 \leq x^{2}+y^{2} \leq 4, x \geq 0, y \geq x$.

20 points
Hint: $\int \frac{1}{\sin ^{2} \theta} d \theta=-\frac{\cos \theta}{\sin \theta}+C$
7. §10.4 Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where
$\mathbf{F}=[\cosh y,-\sinh x], R: 1 \leq x \leq 3, \quad x \leq y \leq 3 x$
20 points
8. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where $\mathbf{F}=\left[x \cosh 2 y, 2 x^{2} \sinh 2 y\right], \quad R: x^{2} \leq y \leq x$.

20 points
9. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem.

Using Green's Theorem, evaluate $\int_{C} x y^{2} d x+2 x^{2} y d y$ counterclockwise around the boundary curve C. Where C is the triangle with vertices $(0,0),(2,2),(2,4)$. 20 points
10. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem.

Using Green's Theorem, evaluate $\int_{C} y^{3} d x-x^{3} d y$ counterclockwise around the boundary curve C of the region R, where C is the circle $x^{2}+y^{2}=4$.

20 points

$4 \quad \S 10.6$ Surface Integrals

1. $\S 10.6$ Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A$. Evaluate the integral given below for the following data. Indicate the kind of surface. (Show the details of your work.) 20 points $\mathbf{F}=[x, y, z], S: \mathbf{r}=\left[u \cos v, u \sin v, u^{2}\right], 0 \leq u \leq 4,-\pi \leq v \leq \pi$
2. $\S 10.6$ Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A$. Evaluate the integral given below for the following data. Indicate the kind of surface. (Show the details of your work.)

20 points
$\mathbf{F}=\left[y^{3}, x^{3}, z^{3}\right], S: x^{2}+4 y^{2}=4, x \geq 0, y \geq 0,0 \leq z \leq h$
3. $\S 10.6$ Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral for the given data. Describe the kind of surface. Show the details of your work. 20 points $\mathbf{F}=\left[y^{2}, x^{2}, z^{4}\right], S: z=4 \sqrt{x^{2}+y^{2}}, \quad 0 \leq z \leq 8, y \geq 0$
4. $\S 10.6$ Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral given below for the following data. Indicate the kind of surface. (Show the details of your work.) 20 points $\mathbf{F}=[0, \sin y, \cos z], S$ the cylinder $x=y^{2}$, where $0 \leq y \leq \frac{\pi}{4}$ and $0 \leq z \leq y$
5. $\S 10.6$ Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral for the given data. Describe the kind of surface. Show the details of your work.

20 points
$\mathbf{F}=[0, \sinh z, \cosh x], S: x^{2}+z^{2}=4,0 \leq x \leq \sqrt{2}, 0 \leq y \leq 5, z \geq 0$
6. $\S 10.6$ Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral given below for the following data. Indicate the kind of surface. (Show the details of your work.) 20 points $\mathbf{F}=[\tan x y, x, y], S: y^{2}+z^{2}=1,2 \leq x \leq 5, y \geq 0, z \geq 0$
7. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral for the given data. Describe the kind of surface. Show the details of your work. 20 points $\mathbf{F}=\left[e^{y}, e^{x}, 1\right], \quad S: x+y+z=1, x \geq 0, y \geq 0, z \geq 0$
8. $\S 10.6$ Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral given below for the following data. Indicate the kind of surface. (Show the details of your work.)

20 points
$\mathbf{F}=[0, x, 0], \quad S: x^{2}+y^{2}+z^{2}=1, x \geq 0, y \geq 0, z \geq 0$
9. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A$. Evaluate $\iint_{S} x^{2} d y d z+y^{2} d x d z+z^{2} d x d y$. 20 points

Where S is the round portion of $0 \leq z \leq \sqrt{1-y^{2}}, 0 \leq x \leq 2$. Describe the kind of surface. Show the details of your work.
Hint: $\int \cos ^{3} t d t=\frac{1}{3} \cos ^{2} t \sin t+\frac{2}{3} \sin t+C$ and $\int \sin ^{3} t d t=-\frac{1}{3} \sin ^{2} t \cos t-\frac{2}{3} \cos t+C$
10. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A$. Evaluate $\iint_{S} x d y d z-z d x d z+y d x d y$. 20 points

Where S a portion of $x^{2}+y^{2}+z^{2}=4$ in the first octant, oriented away from the origin. Describe the kind of surface. Show the details of your work.
Hint: $\int \cos ^{3} t d t=\frac{1}{3} \cos ^{2} t \sin t+\frac{2}{3} \sin t+C$ and $\int \sin ^{3} t d t=-\frac{1}{3} \sin ^{2} t \cos t-\frac{2}{3} \cos t+C$.
Moreover $\cos ^{2} t=\frac{1}{2}(1+\cos 2 t)$ and $\sin ^{2} t=\frac{1}{2}(1-\cos 2 t)$

5 §10.7 Triple Integrals. Divergence Theorem of Gauß

1. $\S 10.7$ Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A$

20 points
Evaluate the integral by the Divergence Theorem. (Show the details.)
$\mathbf{F}=\left[z-y, y^{3}, 2 z^{3}\right], \quad S$ the surface of $y^{2}+z^{2} \leq 4,-3 \leq x \leq 3$
2. §10.7 Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad 20$ points

Evaluate the integral by the Divergence Theorem. (Show the details.)
$\mathbf{F}=\left[5 x^{3}, 5 y^{3}, 5 z^{3}\right], \quad S: x^{2}+y^{2}+z^{2}=4$
Hint: The following facts might be useful:
Cartesian coordinates: $d V=d x d y d z$
Cylindrical coordinates: $d V=r d r d \theta d z, \quad 0 \leq \theta \leq 2 \pi, r \geq 0, \quad x=r \cos \theta, y=r \sin \theta, \quad z=z$
Spherical coordinates: $d V=\rho^{2} \sin \phi d \rho d \phi d \theta, 0 \leq \theta \leq 2 \pi, \quad 0 \leq \phi \leq \pi, \quad \rho \geq 0$,

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

3. $\S 10.7$ Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A$

20 points
Evaluate the surface integral by the Divergence Theorem. Show the details.
$\mathbf{F}=\left[e^{x}, e^{y}, e^{z}\right], S$ the surface of the cube $|x| \leq 1,|y| \leq 1,|z| \leq 1$
4. §10.7 Application of the Divergence Theorem: Surface Integrals $\int_{S} \mathbf{F} \cdot \mathbf{n} d A \quad 20$ points

Evaluate the surface integral by the Divergence Theorem. Show the details.
$\mathbf{F}=[\sin y, \cos x, \cos z], S$, the surface of the cylinder and two disks: $x^{2}+y^{2} \leq 4,|z| \leq 2$

Hint: The following facts might be useful:
Cartesian coordinates: $d V=d x d y d z$
Cylindrical coordinates: $d V=r d r d \theta d z, \quad 0 \leq \theta \leq 2 \pi, r \geq 0, \quad x=r \cos \theta, y=r \sin \theta, z=z$
Spherical coordinates: $d V=\rho^{2} \sin \phi d \rho d \phi d \theta, 0 \leq \theta \leq 2 \pi, \quad 0 \leq \phi \leq \pi, \quad \rho \geq 0$,

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

5. $\S 10.7$ Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A$

Evaluate the surface integral $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$ by the Divergence Theorem. Show the details.
$\mathbf{F}=\left[2 x^{2}, \frac{1}{2} y^{2}, \sin \pi z\right], S$ the surface of the tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$, $(0,0,1)$
6. $\S 10.7$ Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A$

20 points
Evaluate the surface integral $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$ by the Divergence Theorem. Show the details.
$\mathbf{F}=\left[x^{2}, y^{2}, z^{2}\right], S$, the surface of the cone: $x^{2}+y^{2} \leq z^{2}, 0 \leq z \leq h$
Hint: The following facts might be useful:
Cartesian coordinates: $d V=d x d y d z$
Cylindrical coordinates: $d V=r d r d \theta d z, \quad 0 \leq \theta \leq 2 \pi, \quad r \geq 0, \quad x=r \cos \theta, y=r \sin \theta, \quad z=z$
Spherical coordinates: $d V=\rho^{2} \sin \phi d \rho d \phi d \theta, 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi, \rho \geq 0$,

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

7. $\S 10.7$ Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A$

20 points
Evaluate the surface integral $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$ by the Divergence Theorem. Show the details.
$\mathbf{F}=[x y, y z, z x], S$ the surface of the cone $x^{2}+y^{2} \leq 4 z^{2}, 0 \leq z \leq 2$
Hint: The following facts might be useful:
Cartesian coordinates: $d V=d x d y d z$
Cylindrical coordinates: $d V=r d r d \theta d z, \quad 0 \leq \theta \leq 2 \pi, \quad r \geq 0, \quad x=r \cos \theta, y=r \sin \theta, \quad z=z$
Spherical coordinates: $d V=\rho^{2} \sin \phi d \rho d \phi d \theta, \quad 0 \leq \theta \leq 2 \pi, \quad 0 \leq \phi \leq \pi, \quad \rho \geq 0$,

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

8. $\S 10.7$ Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A$

20 points
Evaluate the surface integral $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$ by the Divergence Theorem. Show the details.
$\mathbf{F}=\left[x^{3}-y^{3}, y^{3}-z^{3}, z^{3}-x^{3}\right], \quad S$, the surface of $x^{2}+y^{2}+z^{2} \leq 25, z \geq 0$
Hint: The following facts might be useful:
Cartesian coordinates: $d V=d x d y d z$
Cylindrical coordinates: $d V=r d r d \theta d z, 0 \leq \theta \leq 2 \pi, r \geq 0, \quad x=r \cos \theta, y=r \sin \theta, z=z$
Spherical coordinates: $d V=\rho^{2} \sin \phi d \rho d \phi d \theta, \quad 0 \leq \theta \leq 2 \pi, \quad 0 \leq \phi \leq \pi, \quad \rho \geq 0$,

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

Evaluate the surface integral $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$ by the Divergence Theorem. Show the details.
$\mathbf{F}=\left[\cos z+x y^{2}, x e^{-z}, \sin y+x^{2} z\right], S$ the surface of the solid bounded by $z=x^{2}+y^{2}$ and the plane $z=4$.
10. $\S 10.7$ Application of the Divergence Theorem: Surface Integrals $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$

20 points
Evaluate the surface integral $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$ by the Divergence Theorem. Show the details.
$\mathbf{F}=\left[3 x y^{2}, x e^{z}, z^{3}\right], S$ is the surface of the solid bounded by $y^{2}+z^{2}=1$ and $x=-1$, and $x=2$

6 §10.9 Stokes's Theorem

1. $\S 10.9$ Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$

20 points
Calculate the integral by Stokes's theorem for the following F and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be Positive. (Show the details.)
$\mathbf{F}=\left[y^{2}, x^{2},-x+z\right]$, around the right triangle with vertices $(0,0,1),(1,0,1),(1,1,1)$
2. $\S 10.9$ Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$

20 points
Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[y^{2}, x^{2}, z+x\right]$, around the triangle with vertices $(0,0,0),(1,0,0),(1,1,0)$
3. $\S 10.9$ Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$

20 points
Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=[-5 y, 4 x, z], C$ the circle $x^{2}+y^{2}=16, z=4$
4. $\S 10.9$ Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$

20 points
Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[z, e^{z}, 0\right], C$ the boundary curve of the portion of the cone $z=\sqrt{x^{2}+y^{2}}, x \geq 0, y \geq 0$, $0 \leq z \leq 1$
5. $\S 10.9$ Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$

20 points
Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[0, z^{3}, 0\right], C$ the boundary curve of the cylinder $x^{2}+y^{2}=1, x \geq 0, y \geq 0,0 \leq z \leq 1$
6. $\S 10.9$ Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$

20 points
Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian
coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[e^{y}, 0, e^{x}\right], \quad C$ around the triangle with vertices $(0,0,0),(1,0,0),(1,1,0)$
7. $\S 10.9$ Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$

Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[z^{3}, x^{3}, y^{3}\right], \quad C$ the circle $x=2, y^{2}+z^{2}=9$
8. §10.9 Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$ 20 points
Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[y z, 2 x z, e^{x y}\right], \quad C$ the circle $x^{2}+y^{2}=16, z=5$
9. $\S 10.9$ Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$

20 points
Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[x+y^{2}, y+z^{2}, z+x^{2}\right], \quad C$ around the triangle with vertices $(1,0,0),(0,1,0),(0,0,1)$

