Fall 2020	ENG 5300	Quiz 1	Kevin	Weltzin
You must show all	work to receive full credit.	All work is to be yo	ur own.	<mark>09/28/2020</mark>
This is a closed bo	oks and notes test. Be org	anized. Total poi	nts: 20	:44- 19:57

1. §10.1 Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) 10 points $\mathbf{F} = \sin x \mathbf{i} + \cos y \mathbf{j} + xz \mathbf{k}$, $C : \mathbf{r}(t) = t^3 \mathbf{i} - t^2 \mathbf{j} + t \mathbf{k}$ from (0, 0, 0) to (1, -1, 1).

2. §10.2 Show that the field $\mathbf{F}(x, y, z) = \sin y \mathbf{i} + (x \cos y + \cos z) \mathbf{j} - y \sin z \mathbf{k}$ is conservative and evaluate the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ along C: $\mathbf{r}(t) = \sin t \mathbf{i} + t \mathbf{j} + 2t \mathbf{k}$, $0 \le t \le \frac{\pi}{2}$. Show the details of your work.