1. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a
force, this gives the work done in the displacement along C. (Show the details.) 10 points $\mathbf{F}=\sin x \mathbf{i}+\cos y \mathbf{j}+x z \mathbf{k}, C: \mathbf{r}(t)=t^{3} \mathbf{i}-t^{2} \mathbf{j}+t \mathbf{k}$ from $(0,0,0)$ to (1, $-1,1$).
2. $\S 10.2$ Show that the field $\mathbf{F}(x, y, z)=\sin y \mathbf{i}+(x \cos y+\cos z) \mathbf{j}-y \sin z \mathbf{k}$ is conservative and evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along $C: \mathbf{r}(t)=\sin t \mathbf{i}+t \mathbf{j}+2 t \mathbf{k}, 0 \leq t \leq \frac{\pi}{2}$. Show the details of your work.

10 points

