Fall 2020	ENG 5300	Quiz 3	Ming	zuoyang Chen
You must show all	work to receive full credit	. All work is to be y	<mark>our own.</mark>	<mark>October 12</mark>
This is a closed boo	oks and notes test. Be org	ganized. Total p	oints: 40	19:35-20:05

1. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dA$ Evaluate the integral for the given data. Describe the kind of surface. Show the details of your work. $\mathbf{F} = [y^2, x^2, z^4], S : z = 4\sqrt{x^2 + y^2}, 0 \le z \le 8, y \ge 0$ 20 points

$\S{10.7}$ Application of the Divergence Theorem: Surface Integrals $\oiint {\bf F}\cdot {\bf n}\,dA$

20 points

Evaluate the integral by the Divergence Theorem. (Show the details.) $\mathbf{F} = [5x^3, 5y^3, 5z^3], S: x^2 + y^2 + z^2 = 4$ *Hint*: The following facts might be useful:

Cartesian coordinates: $dV = dx \, dy \, dz$ Cylindrical coordinates: $dV = r \, dr \, d\theta \, dz$, $0 \le \theta \le 2\pi$, $r \ge 0$, $x = r \cos \theta$, $y = r \sin \theta$, z = zSpherical coordinates: $dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$, $0 \le \theta \le 2\pi$, $0 \le \phi \le \pi$, $\rho \ge 0$, $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$