Fall 2020	ENG 5300	Test 1	Mingzuoy	vang Chen
You must show all	work to receive full credit.	All work is to be you		Oct 19 2020
This is a closed boo	oks and notes test. Be org	anized. Total poin	ts: 100	18:40-19:55
Submit to BB a sin	gle b/w pdf file, named us	ing your last name.	emailed solutions	won't be graded
1. §10.1 Line Inte	gral. Work done by a forc	e. Calculate $\int_C \mathbf{F}(\mathbf{r})$	$\cdot d\mathbf{r}$ for the followi	ng data. If \mathbf{F} is a
force, this gives the work done in the displacement along C . (Show the details.)				

 $\mathbf{F} = [x+y, y+z, z+x], \ C : \mathbf{r} = [2t, 5t, t] \text{ from } t = -1 \text{ to } 1.$ 10 points

2. §10.2 Path-Independent Integrals. Show that the form under the integral sign is exact in the space and evaluate the integral. (Show the details of your work). 10 points

$$\int_{(2,3,0)}^{(0,1,2)} (z \, e^{xz} \, dx + dy \, + x e^{xz} \, dz)$$

3. §10.4 Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\oint_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$

counterclockwise around the boundary curve C of the region R, where $\mathbf{F} = [x^2y^2, -x/y^2], R: 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge x.$ 20 points Hint: $\int \frac{1}{\sin^2\theta} d\theta = -\frac{\cos\theta}{\sin\theta} + C$ 4. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dA$. Evaluate the integral given below for the following data. Indicate the kind of surface. (Show the details of your work.) 20 points $\mathbf{F} = [x, y, z], S : \mathbf{r} = [u \cos v, u \sin v, u^2], 0 \le u \le 4, -\pi \le v \le \pi$ 5. §10.7 Application of the Divergence Theorem: Surface Integrals $\bigoplus_{\alpha} {\bf F} \cdot {\bf n} \, dA$

20 points

Evaluate the surface integral $\oiint_{S} \mathbf{F} \cdot \mathbf{n} \, dA$ by the Divergence Theorem. Show the details. $\mathbf{F} = [x^2, y^2, z^2], S$, the surface of the cone: $x^2 + y^2 \le z^2, 0 \le z \le h$ 6. §10.9 Evaluation of $\oint_C \mathbf{F} \cdot \mathbf{r}' \, ds$

Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.

 $\mathbf{F} = [0, z^3, 0], C$ the boundary curve of the cylinder $x^2 + y^2 = 1, x \ge 0, y \ge 0, 0 \le z \le 1$