1. §10.1 Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=[x,-z, 2 y]$, , from $(1,2,3)$ straight to $(3,2,1)$.
2. $\S 10.2$ Check for Path Independence and, if independent, integrate from $(0,0,0)$ to (a, b, c). (Show the details of your work.)

$$
x y z^{2} d x+\frac{1}{2} x^{2} z^{2} d y+x^{2} y z d z
$$

3. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where $\mathbf{F}=[\cosh y,-\sinh x], R: 1 \leq x \leq 3, \quad x \leq y \leq 3 x$ 20 points
4. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral for the given data. Describe the kind of surface. Show the details of your work. 20 points $\mathbf{F}=\left[e^{y}, e^{x}, 1\right], \quad S: x+y+z=1, x \geq 0, y \geq 0, z \geq 0$
5. $\S 10.7$ Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A$

Evaluate the integral by the Divergence Theorem. (Show the details.)
$\mathbf{F}=\left[5 x^{3}, 5 y^{3}, 5 z^{3}\right], \quad S: x^{2}+y^{2}+z^{2}=4$
Hint: The following facts might be useful:
Cartesian coordinates: $d V=d x d y d z$
Cylindrical coordinates: $d V=r d r d \theta d z, 0 \leq \theta \leq 2 \pi, r \geq 0, x=r \cos \theta, y=r \sin \theta, z=z$
Spherical coordinates: $d V=\rho^{2} \sin \phi d \rho d \phi d \theta, 0 \leq \theta \leq 2 \pi, \quad 0 \leq \phi \leq \pi, \rho \geq 0$,
$x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$
6. §10.9 Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$

Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[e^{y}, 0, e^{x}\right], \quad C$ around the triangle with vertices $(0,0,0),(1,0,0),(1,1,0)$

