1. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=[x-y, y-z, z-x], C: \mathbf{r}=[2 \cos t, t, 2 \sin t]$ from $(2,0,0)$ to $(2,2 \pi, 0)$.
2. $\S 10.2$ Check for Path Independence and, if independent, integrate from $(0,0,0)$ to (a, b, c). (Show the details of your work.) 10 points

$$
e^{y} d x+\left(x e^{y}-e^{z}\right) d y-y e^{z} d z
$$

3. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where $\mathbf{F}=\left[x \cosh 2 y, 2 x^{2} \sinh 2 y\right], \quad R: x^{2} \leq y \leq x$. 20 points
4. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral for the given data. Describe the kind of surface. Show the details of your work. 20 points $\mathbf{F}=\left[y^{2}, x^{2}, z^{4}\right], S: z=4 \sqrt{x^{2}+y^{2}}, 0 \leq z \leq 8, y \geq 0$
5. §10.7 Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A$ 20 points

Evaluate the surface integral $\oiiint \mathbf{F} \cdot \mathbf{n} d A$ by the Divergence Theorem. Show the details.
$\mathbf{F}=\left[x^{3}-y^{3}, y^{3}-z^{3}, z^{3}-x^{3}\right]^{S}, S$, the surface of $x^{2}+y^{2}+z^{2} \leq 25, z \geq 0$
6. $\S 10.9$ Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$ 20 points

Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[y^{2}, x^{2}, z+x\right]$, around the triangle with vertices $(0,0,0),(1,0,0),(1,1,0)$

