Fall 2020	ENG 5300	Test 1		Chenghao Ji
You must show all	work to receive full credi	t. All work is to be yo	our own.	Oct 19 2020
This is a closed bo	oks and notes test. Be o	rganized. Total po	ints: 100	18:40- 19:55
Submit to BB a sir	gle b/w pdf file, named	using your last name.	emailed sol	utions won't be graded

1. §10.1 Line Integral. Work done by a force. Evaluate the line integral, where C is the given curve. (Show the details.) 10 points

 $\int_{C} (y+z)dx + (x+z)dy + (x+y)dz, C \text{ is the line segment from } (1,0,1) \text{ to } (0,1,2)$

2. §10.2 Path Independent Integrals. Show the form under the integral sign is exact in space and evaluate the integral. Show the details of your work. 10 points

$$\int_{(0,0,0)}^{(1,1,0)} e^{x^2 + y^2 + z^2} (x \, dx + y \, dy + z \, dz)$$

3. §10.4 Evaluation of Line Integrals by Green's Theorem.

Using Green's Theorem, evaluate $\int_C xy^2 dx + 2x^2 y dy$ counterclockwise around the boundary curve C. Where C is the triangle with vertices (0,0), (2,2), (2,4). 20 points

4. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dA$ Evaluate the integral given below for the following data. Indicate the kind of surface. (Show the details of your work.) 20 points $\mathbf{F} = [0, \sin y, \cos z], S$ the cylinder $x = y^2$, where $0 \le y \le \frac{\pi}{4}$ and $0 \le z \le y$ 5. §10.7 Application of the Divergence Theorem: Surface Integrals $\bigoplus_{\alpha} {\bf F} \cdot {\bf n} \, dA$

20 points

Evaluate the surface integral $\bigoplus_S {\bf F} \cdot {\bf n} \, dA$ by the Divergence Theorem. Show the details.

 $\mathbf{F} = [\cos z + xy^2, xe^{-z}, \sin y + x^2z], S$ the surface of the solid bounded by $z = x^2 + y^2$ and the plane z = 4.

6. §10.9 Evaluation of $\oint_C \mathbf{F} \cdot \mathbf{r}' \, ds$

20 points

Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.

 $\mathbf{F} = [-5y, 4x, z], C$ the circle $x^2 + y^2 = 16, z = 4$