1. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) 10 points $\mathbf{F}=\sin x \mathbf{i}+\cos y \mathbf{j}+x z \mathbf{k}, C: \mathbf{r}(t)=t^{3} \mathbf{i}-t^{2} \mathbf{j}+t \mathbf{k}$ from $(0,0,0)$ to $(1,-1,1)$.
2. $\S 10.2$ Show the form under the integral sign is exact in space and evaluate the integral. Show the details of your work.

$$
\int_{(5,3, \pi)}^{(3, \pi, 3)}(\cos y z d x-x z \sin y z d y-x y \sin y z d z)
$$

3. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem.

Using Green's Theorem, evaluate $\int_{C} y^{3} d x-x^{3} d y$ counterclockwise around the boundary curve C of the region R, where C is the circle $x^{2}+y^{2}=4$. 20 points
4. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral for the given data. Describe the kind of surface. Show the details of your work. 20 points $\mathbf{F}=[0, \sinh z, \cosh x], S: x^{2}+z^{2}=4,0 \leq x \leq \sqrt{2}, 0 \leq y \leq 5, z \geq 0$
5. §10.7 Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A$ 20 points Evaluate the surface integral $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$ by the Divergence Theorem. Show the details. $\mathbf{F}=\left[3 x y^{2}, x e^{z}, z^{3}\right], S$ is the surface of the solid bounded by $y^{2}+z^{2}=1$ and $x=-1$, and $x=2$
6. $\S 10.9$ Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$ 20 points

Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[z, e^{z}, 0\right], C$ the boundary curve of the portion of the cone $z=\sqrt{x^{2}+y^{2}}, x \geq 0, y \geq 0$, $0 \leq z \leq 1$

