1. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.)

$$
\mathbf{F}=[z, x, y], C: \mathbf{r}=[\cos t, \sin t, t] \text { from }(1,0,0) \text { to }(1,0,4 \pi) .
$$

2. §10.2 Check for Path Independence and, if independent, integrate from $(0,0,0)$ to (a, b, c). (Show the details of your work.) 10 points

$$
\left(\cos \left(x^{2}+2 y^{2}+z^{2}\right)\right)(2 x d x+4 y d y+2 z d z)
$$

3. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where $\mathbf{F}=\left[x^{2}+y^{2}, x^{2}-y^{2}\right], R: 1 \leq y \leq 2-x^{2}$. Sketch R.

20 points
4. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral given below for the following data. Indicate the kind of surface. (Show the details of your work.) $\mathbf{F}=[\tan x y, x, y], S: y^{2}+z^{2}=1,2 \leq x \leq 5, y \geq 0, z \geq 0$
5. §10.7 Application of the Divergence Theorem: Surface Integrals $\oiint_{S} \mathbf{F} \cdot \mathbf{n} d A$

Evaluate the integral by the Divergence Theorem. (Show the details.) $\mathbf{F}=\left[z-y, y^{3}, 2 z^{3}\right], \quad S$ the surface of $y^{2}+z^{2} \leq 4,-3 \leq x \leq 3$
6. §10.9 Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$

Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[0, z^{3}, 0\right], C$ the boundary curve of the cylinder $x^{2}+y^{2}=1, x \geq 0, y \geq 0,0 \leq z \leq 1$

