1. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=[x-y, y-z, z-x], C: \mathbf{r}=[2 \cos t, t, 2 \sin t]$ from $(2,0,0)$ to $(2,2 \pi, 0) . \quad 10$ points
2. $\S 10.2$ Show that the form under the integral sign is exact in space and evaluate the integral. Show the details of your work.

10 points

$$
\int_{(0,1,0)}^{(1,0,1)}\left(e^{x} \cosh y d x+\left(e^{x} \sinh y+e^{z} \cosh y\right) d y+e^{z} \sinh y d z\right)
$$

3. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where $\mathbf{F}=\left[x^{2} e^{y}, y^{2} e^{x}\right], R$ the rectangle with vertices $(0,0),(2,0),(2,3),(0,3)$

20 points
4. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral given below for the following data. Indicate the kind of surface. (Show the details of your work.) $\mathbf{F}=[0, x, 0], \quad S: x^{2}+y^{2}+z^{2}=1, x \geq 0, y \geq 0, z \geq 0$
5. §10.7 Application of the Divergence Theorem: Surface Integrals $\oiint_{S} \mathbf{F} \cdot \mathbf{n} d A$

Evaluate the surface integral by the Divergence Theorem. Show the details. $\mathbf{F}=\left[e^{x}, e^{y}, e^{z}\right], S$ the surface of the cube $|x| \leq 1,|y| \leq 1,|z| \leq 1$
6. §10.9 Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$ 20 points

Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[z^{3}, x^{3}, y^{3}\right], \quad C$ the circle $x=2, y^{2}+z^{2}=9$

