Fall 2020 ENG 5300 Test $1 \quad$ Deep Patel

You must show all work to receive full credit. All work is to be your own.
This is a closed books and notes test. Be organized. Total points: 100
Submit to BB a single b/w pdf file, named using your last name. emailed solutions won't be graded

1. $\S 10.1$ Line Integral. Work done by a force. Calculate $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ for the following data. If \mathbf{F} is a force, this gives the work done in the displacement along C. (Show the details.) $\mathbf{F}=\left[e^{-x}, e^{-y}, e^{-z}\right], C: \mathbf{r}=\left[t, t^{2}, t\right]$ from $(0,0,0)$ to $(2,4,2)$.
2. $\S 10.2$ Show that the field $\mathbf{F}(x, y, z)=\sin y \mathbf{i}+(x \cos y+\cos z) \mathbf{j}-y \sin z \mathbf{k}$ is conservative and evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along $C: \mathbf{r}(t)=\sin t \mathbf{i}+t \mathbf{j}+2 t \mathbf{k}, \quad 0 \leq t \leq \frac{\pi}{2}$. Show the details of your work.
3. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem. Using Green's Theorem, evaluate $\oint_{C} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}$ counterclockwise around the boundary curve C of the region R, where $\mathbf{F}=\operatorname{grad}\left(x^{3} \cos ^{2}(x y)\right), R: 1 \leq y \leq 2-x^{2}$

20 points
4. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A$. Evaluate $\iint_{S} x d y d z-z d x d z+y d x d y$. 20 points Where S a portion of $x^{2}+y^{2}+z^{2}=4$ in the first octant, oriented away from the origin. Describe the kind of surface. Show the details of your work.
5. §10.7 Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A$

Evaluate the surface integral $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$ by the Divergence Theorem. Show the details. $\mathbf{F}=\left[2 x^{2}, \frac{1}{2} y^{2}, \sin \pi z\right], S$ the surface of the tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$, $(0,0,1)$
6. §10.9 Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$

Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=\left[x+y^{2}, y+z^{2}, z+x^{2}\right], \quad C$ around the triangle with vertices $(1,0,0),(0,1,0),(0,0,1)$

