1. $\S 10.1$ Line Integral. Work done by a force. Evaluate the line integral, where C is the given curve. (Show the details.)

$$
\int_{C}(y+z) d x+(x+z) d y+(x+y) d z, C \text { is the line segment from }(1,0,1) \text { to }(0,1,2)
$$

2. $\S 10.2$ Path Independent Integrals. Show the form under the integral sign is exact in space and evaluate the integral. Show the details of your work.

$$
\int_{(0,0,0)}^{(1,1,0)} e^{x^{2}+y^{2}+z^{2}}(x d x+y d y+z d z)
$$

3. $\S 10.4$ Evaluation of Line Integrals by Green's Theorem.

Using Green's Theorem, evaluate $\int_{C} x y^{2} d x+2 x^{2} y d y$ counterclockwise around the boundary curve C. Where C is the triangle with vertices $(0,0),(2,2),(2,4)$. 20 points
4. §10.6 Flux Integrals (3) $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A \quad$ Evaluate the integral given below for the following data. Indicate the kind of surface. (Show the details of your work.) $\mathbf{F}=[0, \sin y, \cos z], S$ the cylinder $x=y^{2}$, where $0 \leq y \leq \frac{\pi}{4}$ and $0 \leq z \leq y$
5. §10.7 Application of the Divergence Theorem: Surface Integrals $\oiiint_{S} \mathbf{F} \cdot \mathbf{n} d A$ 20 points Evaluate the surface integral $\oiiint \mathbf{F} \cdot \mathbf{n} d A$ by the Divergence Theorem. Show the details. $\mathbf{F}=\left[\cos z+x y^{2}, x e^{-z}, \sin y+x^{2} z\right], S$ the surface of the solid bounded by $z=x^{2}+y^{2}$ and the plane $z=4$.
6. §10.9 Evaluation of $\oint_{C} \mathbf{F} \cdot \mathbf{r}^{\prime} d s$ 20 points

Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.
$\mathbf{F}=[-5 y, 4 x, z], C$ the circle $x^{2}+y^{2}=16, z=4$

