Fall 2020 ENG 5300 Test 1 Kevin Weltzin

You must show **all** work to receive full credit. All work is to be your own.

Oct 19 2020
This is a closed books and notes test. Be organized. Total points: **100**Submit to BB a single b/w pdf file, named using your last name. emailed solutions won't be graded

1. $\S 10.1$ Line Integral. Work done by a force. Evaluate the line integral, where C is the given curve. (Show the details.)

$$\int_C (y+z)dx + (x+z)dy + (x+y)dz, C is the line segment from (1,0,1) to (0,1,2)$$

2. §10.2 Path Independent Integrals. Show the form under the integral sign is exact in space and evaluate the integral. Show the details of your work. 10 points

$$\int_{(0,0,0)}^{(1,1,0)} e^{x^2+y^2+z^2} (x \, dx + y \, dy + z \, dz)$$

3.	$\S10.4$ Evaluation of Line Integrals by \P	Green's Theorem.			
	Using Green's Theorem, evaluate	$\int\limits_C xy^2 dx + 2x^2 y dy$	counterclockwise	around the	boundary
	curve C . Where C is the triangle with	th vertices (0,0), (2,	2), (2, 4).		20 points

4. §10.6 Flux Integrals (3) $\iint_S \mathbf{F} \cdot \mathbf{n} \, dA$ Evaluate the integral given below for the following data. Indicate the kind of surface. (Show the details of your work.) 20 points $\mathbf{F} = [0\,,\,\sin y\,,\,\cos z],\,S$ the cylinder $x = y^2,\,$ where $0 \le y \le \frac{\pi}{4}$ and $0 \le z \le y$

 $5.~\S 10.7$ Application of the Divergence Theorem: Surface Integrals $\oiint {\bf F}\cdot {\bf n}\,dA$

20 points

Evaluate the surface integral $\oiint_S {\bf F} \cdot {\bf n} \, dA$ by the Divergence Theorem. Show the details.

 $\mathbf{F} = [\cos z + xy^2, \ xe^{-z}, \ \sin y + x^2z], \ S$ the surface of the solid bounded by $z = x^2 + y^2$ and the plane z = 4.

6. $\S 10.9$ Evaluation of $\oint\limits_C \mathbf{F} \cdot \mathbf{r}' \, ds$

20 points

Calculate this line integral by Stokes's theorem for the given \mathbf{F} and C. Assume the Cartesian coordinates to be right-handed and the z-component of the surface normal to be nonnegative. Show the details.

$$\mathbf{F} = [-5y, 4x, z], C \text{ the circle } x^2 + y^2 = 16, z = 4$$