1. Spectra of progressively narrowing impulses.
(a) Find the Fourier series of

5 points

$$
f_{\alpha}(x)=\left\{\begin{array}{ll}
0 & \text { if } \quad-\pi \leq x \leq-\frac{\pi}{\alpha} \\
\frac{\alpha^{2}}{2 \pi} x \sin (\alpha x) & \text { if }|x| \leq \frac{\pi}{\alpha} \\
0 & \text { if } \quad+\frac{\pi}{\alpha} \leq x \leq+\pi
\end{array} \quad \text { and } \quad f_{\alpha}(x+2 \pi)=f_{\alpha}(x)\right.
$$

for $\alpha \in\{3.1,9.1,27.1\}$.
(b) Use Matlab to plot the Fourier coefficients and the graphs of $f_{\alpha}(x)$ for three values of $\alpha \in$ $\{3.1,9.1,27.1\}$.

12 points
(c) Show that area under the curve of $f_{\alpha}(x)$ over one period is independent of α.

4 points
(d) From results above, what can be said about Fourier coefficients of $\lim _{\alpha \rightarrow \infty} f_{\alpha}(x)$.

4 points

Figure 1: Your result in part (b) should look like this.
2. Effect of enlarging the period $p=2 L$. This is about discussion on pages 511-512.

For each of the following two functions, use Matlab to plot the sum of the first 256 terms of the Fourier Series over the interval $-32 \leq x \leq 32$ for each $L \in\{3,8,16,32\}$, and plot the spectrum a_{n} or b_{n} vs. $\omega_{n}=\frac{n \pi}{L}$ for $0<\omega_{n}<5 \pi$.
(a)

$$
v_{L}(x)=\left\{\begin{array}{ccc}
0 & \text { if } & -L<x<-1 \\
1-x^{2} & \text { if } & -1<x<1 \\
0 & \text { if } & 1<x<L
\end{array} \text { and } \quad v_{L}(x)=v_{L}(x+2 L)\right.
$$

(b)

$$
w_{L}(x)=\left\{\begin{array}{ccc}
0 & \text { if } & -L<x<-1 \\
x^{2}-1 & \text { if } & -1<x<0 \\
1-x^{2} & \text { if } & 0<x<1 \\
0 & \text { if } & 1<x<L
\end{array} \quad \text { and } \quad w_{L}(x)=w_{L}(x+2 L)\right.
$$

Figure 2: Your result in problem 2 should look like these.

Figure 3: Your result in problem 3 should look like these.
3. For the functions in problem 2, set $L=\infty$, and
(a) Find the Fourier cosine and sine transform(s), that is $A(\omega)$ for the even function, and $B(\omega)$ for the odd function.

6 points
(b) Use Matlab to plot $A(\omega)$ and $B(\omega)$ for for $0<\omega<5 \pi$, and compare to the graphs of the Fourier coefficients in problem 2.

8 points

4. §11.3 Forced Oscillations

(a) Find the steady state oscillations of $0.01 y^{\prime \prime}+16 y=f(t)$ where

4 points

$$
f(t)=\left\{\begin{array}{ll}
0 & \text { if }-\frac{3}{2} \leq t \leq-1 \\
-\cos \left(\frac{\pi t}{2}\right) & \text { if }-1 \leq t<0 \\
+\cos \left(\frac{\pi t}{2}\right) & \text { if } 0 \leq t \leq+1 \\
0 & \text { if } 1 \leq t \leq+\frac{3}{2}
\end{array} \quad \text { and } \quad f(t+3)=f(t)\right.
$$

(b) Find the steady state solution to $0.01 y^{\prime \prime}+\gamma y^{\prime}+16 y=f(t)$ with γ chosen to result in critically damped system. Call this solution $y_{c d}(t)$.
(c) Plot^{1} three curves on the same plane with $-3 L \leq t \leq 3 L$, one for $f(t)$ (in red), one for $5 y(t)$ (in blue), and one for $5 y_{c d}(t)$ (in green).

Figure 4: Your result should look like this.

[^0]5. §11.9 Properties of the Fourier Transform

Let $\alpha>0$ and consider

$$
f_{\alpha}(x)=\frac{1}{\sqrt{2 \pi}} \cdot e^{-\alpha x^{2}}
$$

(a) Find $\hat{f}_{\alpha}(\omega)$, the Fourier transform of $f_{\alpha}(x)$.

2 points
(b) Show that area under the curve of $\hat{f}_{\alpha}(\omega)$ is independent of α. 2 points
(c) Use Matlab to sketch the graphs of $f_{\alpha}(x)$ and $\hat{f}_{\alpha}(\omega)$ for $\alpha \in\left\{10,1, \frac{1}{10}\right\}$.

Figure 5: Your result should look like this.
(d) Describe both $\lim _{\alpha \rightarrow 0} f_{\alpha}(x)$ and $\lim _{\alpha \rightarrow 0} \hat{f}_{\alpha}(\omega)$

4 points

[^0]: ${ }^{1}$ Comments on the plot:
 i. Use Matlab's legend to label the curves as shown in the figure.
 ii. Use $n=777$ terms in the Fourier Series.
 iii. Plot $5 y(t)$ instead of $y(t)$, and $5 y_{c d}(t)$ instead of $y_{c d}(t)$ for scaling and visualization purposes.

