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Kalman Filters

Linear Gaussian Systems

© Kalman filter represents beliefs by the mean u; and the
covariance 2 ;
@ Posteriors are Gaussian if

@ State transition is “linear” with added Gaussian noise. (maybe)
@ Measurement is also linear with added Gaussian noise.
© The initial belief bel(xp) is normally distributed.
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Kalman Filters

State Transition Probability

@ State transition is “linear”, with additive zero mean noise
Xt = Aexe—1 + Brur + €

Q Noise €; is zero mean, E{¢;} = 0.
And covariance R; = E{ee] }
© Notice that the mean of the state is
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Kalman Filters

State Transition Probability

@ State transition is “linear”, with additive zero mean noise
Xt = Aexe—1 + Brur + €

Q Noise €; is zero mean, E{¢;} = 0.
And covariance R; = E{ee] }
© Notice that the mean of the state is

E{Xt} = E{Atxt_]_ + Btut + Et} = AtXt_]_ + Btut

© Covariance of the state is given by
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Kalman Filters

State Transition Probability

@ State transition is “linear”, with additive zero mean noise
Xt = Aexe—1 + Brur + €

Q Noise €; is zero mean, E{¢;} = 0.
And covariance R; = E{ee] }
© Notice that the mean of the state is

E{Xt} = E{Atxt_]_ + Btut + Et} = AtXt_]_ + Btut
© Covariance of the state is given by
E{(Xt—(AtXt_]_ + Btut))(Xt—(AtXt_]_ + Btut))T} = E{€t€t—.r} = Rt

© Hence the state transition probability is

Nart Shawash ELEE 5810 Gaussian Filters



Kalman Filters

State Transition Probability

@ State transition is “linear”, with additive zero mean noise
Xt = Aexe—1 + Brur + €

Q Noise €; is zero mean, E{¢;} = 0.
And covariance R; = E{ee] }
© Notice that the mean of the state is

E{x:} = E{Atx¢—1 + Brus + €:} = Atxe—1 + Brus
© Covariance of the state is given by
E{(xe—(Aexe—1 + Bete))(xe—(Aexe—1 + Beur)) T} = Efeve] } = R,
© Hence the state transition probability is

1 (Xt*AtXt71*Btut)TR;I(Xt*AtXt71*BtUt)

p(Xt|Ut>Xt—1) = —F———=¢ 2
\/ |27TRt‘
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Kalman Filters

Measurement Probability

@ Measurement is linear, with additive zero mean noise
ze = CGexe + 0t

©Q Noise ¢; is zero mean, E{o;} = 0.
And covariance Q; = E{5,6; }
© Notice that the mean of the measurement is
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Kalman Filters

Measurement Probability

@ Measurement is linear, with additive zero mean noise
ze = CGexe + 0t

©Q Noise ¢; is zero mean, E{o;} = 0.
And covariance Q; = E{5,6; }
© Notice that the mean of the measurement is

E{Zt} = E{CtXt + 51-} = CtXt

© Covariance of the measurement is given by
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Kalman Filters

Measurement Probability

@ Measurement is linear, with additive zero mean noise
ze = CGexe + 0t

©Q Noise ¢; is zero mean, E{o;} = 0.
And covariance Q; = E{5,6; }
© Notice that the mean of the measurement is

E{Zt} = E{CtXt + 51-} = CtXt
© Covariance of the measurement is given by
E{(Zt — CtXt)(Zt — CtXt)T} = E{étéz—} = Qt

© Hence the measurement probability is
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Kalman Filters

Measurement Probability

@ Measurement is linear, with additive zero mean noise
ze = CGexe + 0t

©Q Noise ¢; is zero mean, E{o;} = 0.
And covariance Q; = E{5,6; }
© Notice that the mean of the measurement is

E{Zt} = E{CtXt + 51-} = CtXt
© Covariance of the measurement is given by
E{(Zt — CtXt)(Zt — CtXt)T} = E{étéz—} = Qt

© Hence the measurement probability is

1 _ (Zt*CtXt)TQ;I(Zt*CtXt)
2

Place) = e
t
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Kalman Filters

Initial belief bel(xp)

© The initial belief bel(xp) is normally distributed, with

@ mean i
@ covariance X

1  (x0—r0) =g H(x0—n0)

B —) 2
V[2mEo|

bel(xo) = p(x0) =
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Kalman Filter Algorithm

Kalman Filter Algorithm

O KalmanFilter(pe—1, Xt—1, ur, z¢)
Q 7y = Aipie—1 + Brug
e ft - Atzt_]_A;r + Rt

Q Ki=%.C/ (thtCtT + Qt)_l
Q e =T + Ke (ze — Celiy)

o 2= (I - KtCt)ft

Q@ return pg, ¥4
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Bayesian Derivation of Kalman Filter

Recall Bayes Filter lteration

To begin with, we had:
° be/(Xt) = p(Xt|Zl:t7 Ul:t)

o bel(xt) = p(xt|z1:6—1, U1.t)

And Bayes Filter iterates the following:

bel(x;) = /p(xt|ut,xt_1) bel(x¢—1) dx¢—1 (1)

bel(x) = 77P(Zt|Xt)w(Xt) (2)
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Bayesian Derivation of Kalman Filter

Summary of Gaussian Linear Systems

Xt = Aexe—1 + Brur + €

zy = Cexe + O
1 3 (xt —Atxt_1—Brut) T Ry H(xt—Apxe_1—Brur)
p(xt|ut, xe—1) = We 2
1 (2= Cext) T Q7 Mz Cext)
p(zt|xt) = We 2
be/(Xo) = P(XO) = 1 e_(XO_MO)TiEI(XO_“O)

and in general
1 (xt_l7;11_1)7—2;_11()&_17;_”,_1)

be/(Xt_]_) = P(Xt—l) = ——¢ 2
\/ 27th_]_
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Bayesian Derivation of Kalman Filter

Prediction. pages 45 to 53 from Probabilistic Robotics by
Thrun, Burgard and Fox

bel(x;) = /p(xt|ut,xt_1) bel(xt—1) dx¢—1

(xt—Atxp_1— Btut) Ry (Xt*Atthlth”t)
2

/ \ ‘27TRt
\/ 27th_]_ ¢

= U/e_Lt dxt—1

(X — Aexe—1 — Btut)TRt_l(Xt — Atxt—1 — Buy)
2

n (Xt—l - Mt—l)TZt__ll(Xt—l - Ht—l)

2
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(xt—1—m¢— 1)T>:t_1(xf71*#:71)
2 dxi_1

here

Lf:




Bayesian Derivation of Kalman Filter

Want to rewrite L; as ‘ Le = Le(xe—1,xe) + Le(xe) ‘ so that

w(Xt) - n/e_Lt dxe—1
= n/e_Lt(Xt—th)_Lt(Xt) dXt—]-

and finally

Bel(xe) — e )
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Bayesian Derivation of Kalman Filter

Derivatives of L;

(Xt — Aexe—1 — Btut)TRt_l(Xt — Aixe—1 — Bruy)

Lf - 2
(Xt—l - Ht—l)TZt__ll(Xt—l - Ht—l)
2
oL
L= —AIR;I (x¢ — Aexe—1 — Brup) + Zt__ll (Xt—1 — pre—1)
Oxt—1
2
L
882 L= ATR7IA, + Yo =t for future use
Xt—1
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Bayesian Derivation of Kalman Filter

Set 8“ = 0 and solve for x;_1

Zt__ll (Xt—l - Mt—l)

S o1 — S = AT R
AIR7MA 1+ X 1 = ALR?
(AtTRt_lAt v z;_ll) xe_1 = ATR

vt

Xy =V, {AIR;l (x;

Nart Shawash
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= AR

Xt

Xt

~ A~ o~

Xt —

Xt —

— Axe-1 — BtUt)
- Btut) - AZ—Rt_lAtXt_]_

Byug) + zt__llﬂt—l
Btut) + Z Lut 1

Btut)+z 1Mt—1
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Bayesian Derivation of Kalman Filter

Now we know one possible L;(x;_1, x¢)

1 _ _ T _
Le(xe—1,xt) = 5 (Xt—l -V, [A;FRt ! (x¢ — Brue) + Zt_lllit—l]> U

(Xt—l -V, [AZ—Rt_l (xt — Bruy) + Zt__ll,ut—l})
and since PDFs integrate to 1

1
/We_Lt(thvxf) dXt—]. = 1
/e—Lt(XtLXf) dXt—]. = |27T\~U|

~——

independent of x;

— ne—Lt(Xt)
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Bayesian Derivation of Kalman Filter

Back to Lt(Xt) = Lt o Lt(Xt—]_; Xt)

Lt(Xt) =1L;— Lt(Xt—laxt)
(Xt — AXe—1 — BtUt)TRt_l(Xt — AXe—1 — BtUt)
2
N (Xe—1 — pe—1) T8 (xem1 — pe—1)
2
1 Tp-1 -1 T o1
- 5 (Xt_]_ — Wt |:Af Rf (Xt — Btut) + Zt—llu‘t—l]> v

(Xt—l -V, [AZ—Rt_l (xt — Bruy) + Zt__ll,ut—l])

Next, expand and cancel terms with x;_; (details omitted) to get
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Bayesian Derivation of Kalman Filter

1 1 _
Le(xe) = +§(Xt — BtUt)TRt_l(Xt — Beug) + EHZ—_1Zt_11Ht—1
1 _ _ T _ 1\~
) |:AZ—Rt l(Xt - Btut) + Zt_lllit—l] (AtTRt lAt + Zt_ll)

[A,_T R7M(xe — Beue) + z;_llut_l]

OLs(x, _ — - —1) 7!
81:7)((,30 =R, 1(xt — Biu) — R; LA, (AZ—Rt YA+ Zt—ll)
[AIR;l(xt — Bug) + Zt_—llrut—l}

- [R;l ~RTIA(ATR7IA, + z;_ll)—lAtTR;l] (x¢ — Beuy)

— RA(A RTA + ) T e
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Bayesian Derivation of Kalman Filter

Matrix Inversion Lemma

¢ D Coxn ‘ Dnxn

A B\ ANXN‘BNXn _ %
HHH H

(A-BD'C)yt=A1+ AIB(D - CcAT!B)tcAa!
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Bayesian Derivation of Kalman Filter

Apply Matrix Inversion Lemma

aL(;)(:t) Re' = REVA(AT R A+ T2 AT R (xe — B
(Re+AZ 1Al )T
— ROA(AIRTA AT T e
= (Re + A:Z: 1A )7 (%t — Biuy)
— RTAAI R A+ ) T e
Next, set 8Lt(xt) =0

(Re+-AZ: 1A 1 —Biur) = RyMA(A RTAAT ) IS e
and solve for x;.
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Bayesian Derivation of Kalman Filter
. [0
t

Xt = Beup + (Re + A X e 1 ADRTAATRA A+ 27071 78 e

-1 —
A+AT Al R A (S 1ATRTMAH) 1

-1
= Beup + A (/ + Zt_lAtTR,_TlAt) (Zt_lAtTRt_lAt + /) et

I
= Biuy + Arpir—1 this is line 2 of Kalman Algorithm
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Bayesian Derivation of Kalman Filter

o ath(Xt)
Find ~ Vil

t

L

8 at)(:(t) = (Rt + Atzt_]_AZ—)_l(Xt — Btut)
t
— ROA(A! R A AT T E e

2

L

L(;t) = (Re + AZe1Al) !
o)

this gives line 3 of Kalman Algorithm
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Bayesian Derivation of Kalman Filter

Measurement Update

Need to compute

bel(xt) = np(zc|xc) bel(xt)

with
( | ) 1 _(Zt—CtXt)TQt_I(Zt—CtXt)
P\Zt|Xt) = —F——¢€ 2
\/ |27TQt|
and
S L(xc) (Xt*ﬁt)Tft_l(xt*ﬁt)
bel(x;) =ne >V =ne”— 2
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Bayesian Derivation of Kalman Filter

Hence

bel(x:) = np(z|x:) bel(x:)

1 (Zt*CtXt)TQ;I(Zt*CtXt) (Xt*ﬁt)Tf;I(Xt*ﬁt)
2

= 76_ -
VTN

2 e
_Jt

:ne

here

(ze — Cexe) T QM (2e — Cexe) n (xt — Et)Tft_l

2 2

Jt — (Xf B Et)
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Bayesian Derivation of Kalman Filter

Derivatives of J;

_ —\T=-1 _
J, = (2t — Cox)T Qi Mz — Cox) | (e — ) TE, (xe — )
t 2 * 2

o0J

ox: —C/ Q@ (ze — Cexe) + ft_l(Xt — Tit)
Xt

0%J

e ¢ QG —|—ft_1 this gives the covariance of bel(x;)
t

Y, = (CtTQt—lCt +f;1>_1
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Bayesian Derivation of Kalman Filter

The mean of bel(x;) is the minimum of g—;(’t.

e (T Q 2 — Coxe) + 5, (x¢e —Ti,) = O
(zt Cixt) set x; = pu; to get
pe — i) = G Qi Mz — Cepue)
Yze — Cepe + Gty — Cefiy)
pe =) = G Q¢ Hze — Come) — G Q@ Celpe — 1)
QM (2~ Cm) = (T @7 G+ 50 ) (e — o)

P
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Bayesian Derivation of Kalman Filter

Kalman Gain K; = ¥,C Q; !

The mean of bel(x;) is the minimum of g—;ft.

— — _ =1 _
Gl Q' (ze — Come) = (CtTQt G+ Y, )(Nt )

b
ZtCtTQtil(zt — Cifty) = pe — g
——
Kt
Mt = Et + Kt(zt — Cfﬁt) line 5
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Bayesian Derivation of Kalman Filter

Line 6: Zt = (/ n— KtCt) ft

_ 11
Y= (CtTQt_lCt +X, 1) use Matrix Inversion Lemma
- = 7 B
— T, - T.C (Qt + GG ) CTe
— — -1 —
_ [/ _y.cT (Qt v Ctztc,_f) AR
=K: using 3.45 page 53
= (I — K:Ct) &+ this is line 6 of Kalman Algorithm
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