Robot Perception

Nart Shawash ELEE 5810

April 19, 2021

Table of contents

- 1 §6.1 Introduction
- 2 §6.2 Maps
- 3 §6.3 Beam Models and Range Finders

Sensors and Measurement

- Sensors are either laser, or ultrasound (sonar suffers from specular reflection).
- Inability of sonar to reliably measure range to near by object is often modeled as sensor noise.
- Inaccuracies of sensor models are described using conditional pdf: $p(z_t|x_t)$.
- Many sensors (eg. cameras) generate more than one numerical measurement $z_t = \{z_t^1, z_t^2, \dots, z_t^K\}$.
- Assuming independence of z_t^i and z_t^j ($i \neq j$) for convenience, we will use

$$p(z_t|x_t,m) = \prod_{k=1}^K p(z_t^k|x_t,m)$$

Maps: Feature based and Location based

Definition

A map m of the environment is a list of objects in the environment and their locations. $m = \{m_1, m_2, m_3, \dots, m_N\}$.

- Feature based maps.
 - m_n contains: a) properties of a feature, b) cartesian location of a feature.
 - Specifies the shape of the environment at specific location.
 - Constructed from sensor data.
- Location based maps.
 - Uses $m_{(x,y)}$.
 - Occupancy grid assigns to each (x, y) a binary occupancy value

§6.3.1 Basic Measurement Algorithm

- Beam finders measure the range to near by objects
 - along laser beams.
 - with a cone of ultrasonic sensor.
- Four types of measurement errors:
 - **1** Small measurement noise (truncated gaussian $p_{hit}(z_t^k|x_t,m)$)
 - ② Errors due to unexpected objects (truncated exponential $p_{\text{short}}(z_t^k|x_t,m)$)
 - **3** Errors due to failure to detect objects (point mass at z_{max} $p_{\text{max}}(z_t^k|x_t, m)$)
 - **3** Random unexplained noise $(p_{rand}(z_t^k|x_t, m))$ is uniform on $[0, z_{max}]$
- $p(z_t|x_t, m)$ is a "mixture" of 4 densities.

$$p(z_t^k|x_t, m) = \begin{pmatrix} z_{\text{hit}} & z_{\text{short}} & z_{\text{max}} & z_{\text{rand}} \end{pmatrix} \begin{pmatrix} p_{\text{hit}}(z_t^k|x_t, m) \\ p_{\text{short}}(z_t^k|x_t, m) \\ p_{\text{max}}(z_t^k|x_t, m) \\ p_{\text{rand}}(z_t^k|x_t, m) \end{pmatrix}$$

Correct range with local measurement noise. $p_{hit}(z_t^k|x_t, m)$

- Let z_t^{k*} be the true range of the object, and let z_t^k be the measurement.
- Error $z_t^k z_t^{k*}$ is normally distributed, with mean z_t^{k*} and variance σ_{hit}^2 .
- In practice measured values are limited to $[0, z_{\text{max}}]$. Where z_{max} is the sensor range. So need to truncate the gaussian, so it becomes
- Recall that $\mathcal{N}(z_t^k; z_t^{k*}, \sigma_{\mathsf{hit}}^2) = \frac{1}{\sqrt{2\pi\sigma_{\mathsf{hit}}^2}} e^{-\frac{1}{2}\frac{\left(z_t^k z_t^{k*}\right)^2}{\sigma_{\mathsf{hit}}^2}}$

Unexpected objects. $p_{short}(z_t^k|x_t,m)$

- Objects (people) in the environment not modeled by the map cause range finders to produce short ranges.
- Treated as sensor noise, with the property that they cause ranges to be shorter than z_t^{k*}.
- Two people (with $\{r_1, r_2\}$) appear in laser beams' way
 - will measure r_1 is both people or just 1st present.
 - will measure r_2 if only 2nd is present.
- Modeled by exponential distribution.
- Need to trancate, since $z_t^k \in [0, z_{k*}]$. And we obtain
- $p_{\text{short}}(z_t^k|x_t, m) = \begin{cases} \eta \, \lambda_{\text{short}} e^{-\lambda_{\text{short}} z_t^k} & \text{if } 0 \leq z_t^k \leq z_t^{k*} \\ 0 & \text{otherwise} \end{cases}$

$$\bullet \text{ Here } \eta = \frac{1}{\frac{z_t^{k*}}{\int\limits_0^{\lambda_{\mathsf{short}}} e^{-\lambda_{\mathsf{short}} z_t^k} \, dz_t^k}} = \frac{1}{1 - e^{-\lambda_{\mathsf{short}} z_t^{k*}}}$$

Failures to detect objects. $p_{\text{max}}(z_t^k|x_t, m)$

- Objects are not detected because
 - Specular reflection in sonar.
 - Black, light absorbing objects in laser detection.
 - Measuring objects in bright sun light using lasers.
- Typical result of sensor failure is max-range measurement.

•
$$p_{\text{max}}(z_t^k|x_t, m) = \mathcal{I}(z = z_{\text{max}}) = \begin{cases} 1 & \text{if } z = z_{\text{max}} \\ 0 & \text{otherwise} \end{cases}$$

• This distribution is referred to as *point mass* distribution.

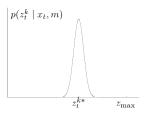
Random unexplained noise measurements. $p_{rand}(z_t^k|x_t, m)$

- Examples of random "unexplained" measurements could be
 - Phantom reading in sonars (bouncing off walls).
 - Crass-talk between sensors.
- Modeled using uniform distribution

•
$$p_{\text{rand}}(z_t^k|x_t, m) = \begin{cases} \frac{1}{z_{\text{max}}} & \text{if } 0 \leq z_t^k \leq z_{\text{max}} \\ 0 & \text{otherwise} \end{cases}$$

Four densities

(a) Gaussian distribution $p_{\rm hit}$

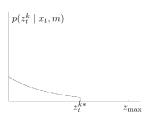


(c) Uniform distribution p_{max}

$$p(z_t^k \mid x_t, m)$$

$$z_t^{k*} \qquad z_{\text{max}}$$

(b) Exponential distribution $p_{
m short}$

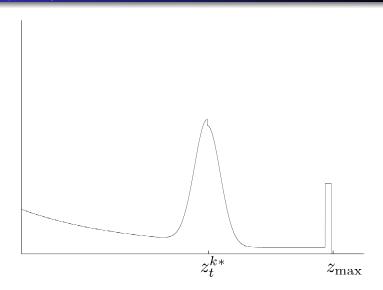


(d) Uniform distribution p_{rand}

$$p(z_t^k \mid x_t, m)$$

$$z_l^{k*} = z_{\max}$$

$$p(z_t^k|x_t,m) = z_{
m hit}p_{
m hit} + z_{
m short}p_{
m short} + z_{
m max}p_{
m max} + z_{
m rand}p_{
m rand}$$



Computing
$$p(z_t|x_t, m) = \prod_{k=1}^K p(z_t^k|x_t, m)$$

Recall that the robot has K sensors.

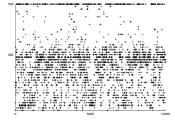
- **1** Algorithm beam-range-finder-model(z_t, x_t, m):
- **2** q = 1
- compute z_t^{k*} for measurement the z_t^k using ray casting

$$p = z_{hit} \cdot p_{hit}(z_t^k | x_t, m) + z_{short} \cdot p_{short}(z_t^k | x_t, m) + z_{max} \cdot p_{max}(z_t^k | x_t, m) + z_{rand} \cdot p_{rand}(z_t^k | x_t, m)$$

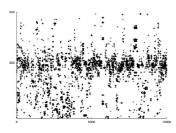
- $q \leftarrow q \cdot p$
- return q

Adjusting intrinsic model parameters

$\{z_{\mathsf{hit}}, \overline{z_{\mathsf{short}}, z_{\mathsf{max}}, z_{\mathsf{rand}}, \sigma_{\mathsf{hit}}^2, \lambda_{\mathsf{short}}}\} = \Theta$



(b) Laser data



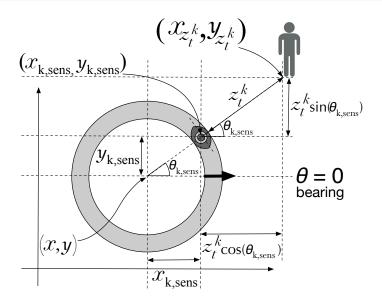
```
Algorithm learn-intrinsic-parameters (Z, X, m)
              repeat until converges
2
(3)
                   for all z_i \in Z do
                              \eta = \frac{1}{p_{\mathsf{hit}}(z_i|x_i,m) + p_{\mathsf{short}}(z_i|x_i,m) + p_{\mathsf{max}}(z_i|x_i,m) + p_{\mathsf{rand}}(z_i|x_i,m)}
4
6
                               calculate z;
6
                               e_{i,\text{hit}} = \eta p_{\text{hit}}(z_i|x_i,m)
(1)
                               e_{i,\text{short}} = \eta \, p_{\text{short}}(z_i|x_i,m)
8
                               e_{i,\max} = \eta \, p_{\max}(z_i|x_i,m)
                              e_{i,rand} = \eta p_{rand}(z_i|x_i, m)
9
1
                   z_{\text{hit}} = \left(\sum_{i} e_{i,\text{hit}}\right)/|Z|
                   z_{\text{short}} = \left(\sum_{i} e_{i,\text{short}}\right)/|Z|
•
1
                   z_{\text{max}} = \left(\sum_{i} e_{i,\text{max}}\right)/|Z|
                   z_{\text{rand}} = \left(\sum_{i} e_{i,\text{rand}}\right) / |Z|
(B)
                   \sigma_{\mathsf{hit}}^2 = \frac{\sum_{i} e_{i,\mathsf{hit}} (z_i - z_i^*)^2}{\sum_{i} e_{i,\mathsf{hit}}}
4
                   \lambda_{\mathsf{short}} = \frac{\sum_{i} e_{i,\mathsf{short}}}{\sum_{i} e_{i,\mathsf{short}} z_{i}}
(
              return \Theta = \{z_{hit}, z_{short}, z_{max}, z_{rand}, \sigma_{hit}^2, \lambda_{short}\}
1
```

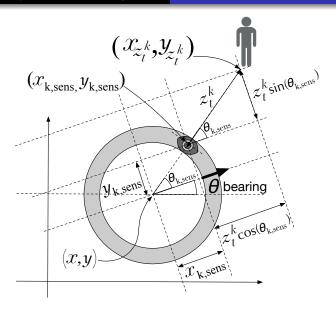
§6.4 Likelihood Fields and Range Finders

Recall: z_t^* is range measurement, and $x_t = (x \ y \ \theta)^T$ is robot pose.

- $\begin{pmatrix} x_{k,\text{sens}} \\ y_{k,\text{sens}} \end{pmatrix}$ is the relative location of the sensor in robot's fixed coordinate system.
- $\theta_{k,sens}$ is the angular orientation of sensor beam relative to robot's heading direction.
- The end point of measurement z_t^k , is mapped into global coordinate system using

$$\begin{pmatrix} x_{z_t^k} \\ y_{z_t^k} \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \underbrace{\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_{k,\text{sens}} \\ y_{k,\text{sens}} \end{pmatrix}}_{\text{vector from robot's center to } k\text{th sensor}} + z_t^k \begin{pmatrix} \cos (\theta + \theta_{k,\text{sens}}) \\ \sin (\theta + \theta_{k,\text{sens}}) \end{pmatrix}$$





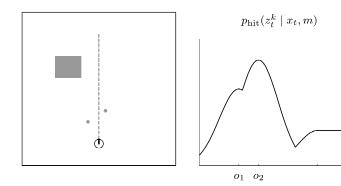


Figure: A cross-section through likelihood field.

03

 z_{max}

Three types of sources of noise and uncertainty.

- Measurement noise. Modeled using 2D (actually 1D) Gaussians.
 - $\begin{aligned} &\text{0 } \textit{dist} = \\ &\underset{(x',y')}{\min} \left\{ \sqrt{\left(x_{z_t^k} x'\right)^2 + \left(y_{z_t^k} y'\right)^2} \middle| \left(x',y'\right) \text{ occupied in } m \right\}, \\ &\text{and measurement coordinates } \left(x_{z_t^k},y_{z_t^k}\right). \end{aligned}$
 - Probability of sensor measurement is zero-centered Gaussian $p_{\text{hit}}(z_t^k|x_t,m) = \epsilon_{\sigma_{\text{hir}}}(\textit{dist})$
- **Pailures**. Max-range readings, modeled by point-mass distribution p_{max} .
- **3 Unexplained random measurements**. Uniform distribution p_{rand} used to model random noise in perception.

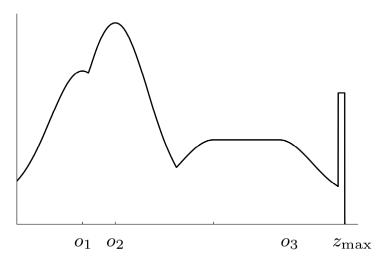


Figure: $p(z_k^t|x_t, m) = z_{hit} \cdot p_{hit} + z_{rand} \cdot p_{rand} + z_{max} \cdot p_{max}$

- **1** Algorithm likelihood-field-range-finder-model(z_t, x_t, m)
- **2** q = 1
- of for all k do
- $x_{x_t^k} = x + x_{k,\text{sens}} \cos \theta y_{k,\text{sens}} \sin \theta + z_t^k \cos(\theta + \theta_{k,\text{sens}})$
- $y_{x_t^k} = y + y_{k,\text{sens}} \cos \theta + x_{k,\text{sens}} \sin \theta + z_t^k \sin(\theta + \theta_{k,\text{sens}})$
- $\text{dist} = \min_{(x',y')} \left\{ \sqrt{\left(x_{z_t^k} x'\right)^2 + \left(y_{z_t^k} y'\right)^2} \right\}$
- $q \leftarrow q \cdot \left(z_{\mathsf{hit}} \cdot \mathsf{prob}(\mathit{dist}, \sigma_{\mathsf{hit}}) + \frac{z_{\mathsf{random}}}{z_{\mathsf{max}}}\right)$
- return q

Comments on likelihood-field-range-finder-model

•
$$dist = \min_{(x',y')} \left\{ \sqrt{\left(x_{z_t^k} - x'\right)^2 + \left(y_{z_t^k} - y'\right)^2} \right\}$$
 is costly.

- Euclidean distance is smooth, so $p(z_t^k|x_t, m)$ is smooth.
- Disadvantages:
 - Does not model people making short readings.
 - 2 Treats sensors as if they see through walls.
 - Can not handle unexpected areas.

§6.5 Correlation-Based Measurement Models

- Goal is to transform consecutive scans (measurements) into occupancy maps or local maps m_{local} .
- Map matching uses correlations between measurements (scans) and the map m.
- The robot is at $x_t = (x \ y)^T$.
- $m_{x,y,local}(x_t)$ is the grid cell in local map containing $x_t = (x \ y)^T$.
- Compare both maps (measured and m) using

$$\rho_{m,m_{\mathsf{local}},x_t} = \frac{\sum_{\mathsf{x},\mathsf{y}} (m_{\mathsf{x},\mathsf{y}} - \overline{m}) \cdot (m_{\mathsf{x},\mathsf{y},\mathsf{local}}(x_t) - \overline{m})}{\sqrt{\sum\limits_{\mathsf{x},\mathsf{y}} (m_{\mathsf{x},\mathsf{y}} - \overline{m})^2 \sum\limits_{\mathsf{x},\mathsf{y}} (m_{\mathsf{x},\mathsf{y},\mathsf{local}}(x_t) - \overline{m})^2}}$$

• where $\overline{m} = \frac{1}{2N} \sum_{x,y} (m_{x,y} + m_{x,y,local})$ and N umber of overlaps between local and global maps.

- \bullet $-1 \leq \rho_{m,m_{local},x_t} \leq +1$.
- Map matching interprets $p(m_{local}|x_t, m) \stackrel{as}{=} \max\{\rho_{m, m_{local}, x_t}, 0\}$.

Properties of Map matching:

- Easy to compute.
- 2 The resulting $p(m_{local}|x_t, m)$ is not smooth as a function of x_t .
- **3** To smooth out the dependence on x_t , can convolve m with a Gaussian. This will give approximate likelihood field.

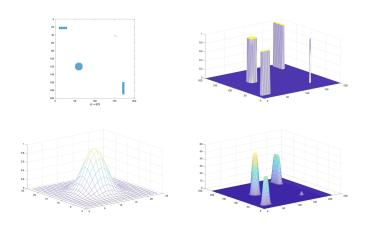


Figure: Convolving non-smooth map with a gaussian kernel.