| Win 2022 ELEE 5810 Test 1 Isis Moussan |

You must show all work to receive full credit. All work is to be your own. 04/04/2022
This is a closed books and notes test. Be organized. Total points: 102 c0:10-20:30

1. LMS update rule states
w(n+1) = w(n) + ae(n)x(n)

Recall that deterministic gradient descent LMS analysis resulted in a step size bound

I<ac<

)\max

and since all eigenvalues of Ryxn(n) = E{x(n)x?(n)} are nonnegative we have

2
0<a< <

Zﬁil )\z )\max

N
(a) Show that Tr(R) = Z i 5 points

Hint: Tr(AB) = Tr(BA ) and R = MAM” | where M is orthogonal.

(b) Explain why Tr(R) corresponds to instantaneous tap input power, that is average energy of

5 points
x(n:n-N+1,1) = [z(n), z(x — 1), -+, z(n — N + 1)}7

(c) Conclude from (a) and (b) the optimal LMS step size « using instantaneous estimates of tap
input power. 3 points
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(d) When computing crosscorrelations and autocorrelations we used time averages instead of
ensemble averages, assuming that they are equal in our simulations. Describe the difference
between the ensemble average p(n) = E{x(n)} and the time average ji = Zﬁl x(7).

8 points

(e) Comment on the use of step size 5 points

1
“T 001+ x(n:n-N+1,1)Tx(n:n-N+1,1)

instead of ]

x(n:n-N+1,1)Tx(n:n-N+1,1)

o =
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2. System lIdentification and Tracking
Suppose RLS or LMS were used to track a linear system modeled as moving average with unknown
constant coefficients w = [w; wy wg]T, also let the adaptive filter have three weights as well w
If the system excitation is given by

x()—{l if mod (n,4) =1

)0 otherwise

adpv*

(a) Find the 3 x 3 autocorrelation matrix Rgy3 of z(n). 10 points
(b) What is the rank of Rg3.3? 5 points
(c) Will the adaptive filters converge to correct Wiener solution or not? Why? 5 points
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3. Markov Processes; Stochastic Matrices On any given day Henry is either cheerful (C), so-so
(S), or glum (G). If he is cheerful today, then he will be C, S or G tomorrow with respective
probabilities 0.5, 0.4, 0.1. If he is feeling so-so today, then he will be C, S, or G tomorrow
with probabilities 0.3, 0.4, 0.3. If he is glum today, then he will be C, S, or G tomorrow with
probabilities 0.2, 0.3, 0.5.

(a) Draw a mood (state) transition diagram describing this problem. 3 points

(b) Write down a stochastic matrix M corresponding to the diagram above. 3 points

(c) Write Matlab script to simulate Henry’s moods for N days. Your code accepts a positive
integer N for number of days and generates a sequence of N moods according to the Markov
model specified above. For N around 10,000 the proportion of days for each mood will
approach the eigenvector whose eigenvalue is 1. 10 points

(d) Use Matlab’s | [u v]=eig(M); | command to find the eigenvector x of M corresponding to the
eigenvalue A\ = 1, that is, the stationary distribution x that satisfies

x = Mx

Normalize that eigenvector correctly (as a pdf, and not as Euclidean norm). Comment on,
and compare this x with your result in (c). 4 points

4. Stochastic 2-by-2 matrices
Let M = [ p 1;‘1} with0<p<land0<gq<1.

L—=p
(a) Verify that [1 1] is a left eigenvector of M, that is [1 1]M = ¢[1 1]. 3 points
(b) What is the eigenvalue ¢ corresponding to the left eigenvector [1 1]7 3 points
(c) Use the facts |Tr(M) = A\ + Aa| and |[M| = A; - A2 | to show that one of the eigenvalues
{A\1, A2} equals to 1. 3 points
(d) What is the other eigenvalue (the one not equal to 1)7 3 points

(e) Find eigenvectors {v; va} corresponding to the eigenvalues {1, Ao} respectively. 3 points

(f) Verify correctness of your results in (e) by multiplying: Mv,; = \;v;, @ € {1, 2}. 3 points

5. Numerical example

11

(a) Find the stable equilibrium distribution of the matrix [ 23 } 3 points
2 3

(b) Verify the correctness of your result in (a). 3 points
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6. Stochastic n-by-n matrices
Recall that an n x n matrix A is said to be stochastic if the following conditions are satisfied

(a) Entries of A are non negative, that is ¢;; >0 forall1 <i<mnandall 1 <j<n.

(b) Each column of A sums to 1, that is > 1 ja;; =1, forall 1 <j <n.

Let S and M be arbitrary stochastic n-by-n matrices.

(a) Show that A = 1 is an eigenvalue of S. 3 points
(b) Show that S? is also a stochastic matrix. 3 points
(c) Does MS have to be stochastic? Explain. 3 points
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