Example: Given that $$f_0(x)=x^4+2x^3-9x^2-10x+50$$ has a root (aka zero) $$x=-3-i$$ Find all zeros (aka roots) of \(f_0(x)\) and factor \(f_0(x)\) completely.
Solution:
  1. By the Factor Theorem, \( (x-[-3-i])\) is a factor of \(f_0(x)\).
  2. All coefficients of \(f_0(x)\) are real, so other factor of \(f_0(x)\) is \((x-[-3+i])\), that is the roots are conjugate pairs.
  3. Now we have two factors of \(f_0(x)\), and they are \begin{align*} (x-[-3-i])(x-[-3+i]) &=([x+3]+i)([x+3]-i) \\ &=[x+3]^2-i^2\\ &=x^2+6x+9+1 \\ &=x^2+6x+10 \,\,\,\,\,\, \text{ is a factor of } f_0(x) \end{align*}
  4. Use long division to find the other factor(s)
    $$ \require{enclose} \begin{array}{r} x^2-4x+5\hspace{31mm} \\[-3pt] x^2+6x+10 \enclose{longdiv}{x^4+2x^3-\,\,9x^2-10x+50}\kern-.2ex \\[-3pt] \underline{\,x^4+6x^3+10x^2\phantom{-10x+50}} \\[-3pt] \phantom{x^4}-4x^3-19x^2-10x+50 \\[-3pt] \underline{\phantom{x^4}-4x^3-24x^2-40x\phantom{.+50}} \\[-3pt] \phantom{x^4-4x^3-2}5x^2+30x+50 \\[-3pt] \underline{\phantom{x^4-4x^3-2}5x^2+30x+50} \\[-3pt] \phantom{00}0 \end{array} $$
    Hence $$f_0(x)=x^4+2x^3-\,\,9x^2-10x+50 = (x^2+6x+10)(x^2-4x+5)$$
  5. Find the zeros of the \((x^2-4x+5)\) factor using quadratic formula \[ x_{1,2}= \frac{4\pm\sqrt{16-4(5)}}{2}=\frac{4\pm\sqrt{-4}}{2}=\frac{4\pm2i}{2}=2\pm i \] Now we know all four zeros of \(f_0(x)\), and they are \(\{-3-i, -3+i, 2-i, 2+i\}\)
  6. Finally, we declare victory by writing complete factorization of \(f_0(x)\) as \[ f_0(x)=\underbrace{\left(x-[-3-i]\right)\left(x-[-3+i]\right)}_{x^2+6x+10}\underbrace{\left(x-[2-i]\right)\left(x-[2+i]\right)}_{x^2-4x+5} \]