ENG 5300 (Fall 2020)
Advanced Engineering Mathematics


Syllabus, and the Text.

Final
Mingzuoyang Chen Chris Collins Jon-Michael X Grabowski Chenghao Ji
Ferris Kimmil Chaowei Li Yichun Li Yufan Lu
Brendan McClanahan Deep Patel Devendar Reddy Thallapureddy Kevin Weltzin
Jin Xue Ruihao Yang Yanjun Yao Dong Ye
Zachary Satawa
Upload to Black Board. A single b/w pdf in a folder with Matlab codes.


Matlab script for Heat in a Very Long Bar page 570: for example if the initial temperature was \(u(x,0)=f(x)\) $$ f(x)=\begin{cases} -2-x & \text{ if } -2 \leq x \leq -1 \\ x & \text{ if } -1 \leq x \leq +1 \\ +2-x & \text{ if } +1 \leq x \leq +2 \\ 0 & \text{ if } +2\leq |x| \end{cases} $$ Then insert the heat integral (that is, a convolution of the heat kernel with initial temperature. also recall that \(v\) is a dummy variable here) $$ u(x,t)=\frac{1}{2c\sqrt{\pi t}}\int\limits_{-\infty}^\infty f(v)e^{-\frac{(x-v)^2}{4c^2t}}\, dv $$ directly into
fplot
as follows
clear all; clc;
syms x v t 

for t=0:0.01:2
    fplot(1/(2*sqrt(pi*t))*(int((-2-v)*exp(-(x-v)^2/(4*t)),v,-2,-1)+int(v*exp(-(x-v)^2/(4*t)),v,-1,1)+int((2-v)*exp(-(x-v)^2/(4*t)),v,1,2)),[-3 3]);
    axis image; axis([-3 3 -1 1]); title(t); xlabel('x-axis'); ylabel('temperature');
    drawnow;
end

Problems for Quiz 4 on Wednesday December 2 2020.

Quiz 4.
Mingzuoyang Chen Chris Collins Jon-Michael X Grabowski Chenghao Ji
Ferris Kimmil Chaowei Li Yichun Li Yufan Lu
Brendan McClanahan Deep Patel Devendar Reddy Thallapureddy Kevin Weltzin
Jin Xue Ruihao Yang Yanjun Yao Dong Ye
Zachary Satawa
Upload to Black Board. A single b/w pdf


Test 2
Mingzuoyang Chen Chris Collins Jon-Michael X Grabowski Chenghao Ji
Ferris Kimmil Chaowei Li Yichun Li Yufan Lu
Brendan McClanahan Deep Patel Devendar Reddy Thallapureddy Kevin Weltzin
Jin Xue Ruihao Yang Yanjun Yao Dong Ye
Zachary Satawa
Upload to Black Board. A single b/w pdf in a folder with Matlab codes.


Here we want use Euler's Identity \(\boxed{e^{i\theta}=\cos \theta +i\sin \theta }\) to repackage $$ f(x)=\color{blue}{\int\limits_0^\infty} \left[ A(\omega)\cdot \cos \omega x + B(\omega)\cdot \sin \omega x \right] \color{blue}{d\omega} $$ with $$ \boxed{A(\omega)=\frac{1}{\pi} \int\limits_{-\infty}^\infty f(v)\cdot \cos \omega v\, dv} \,\,\, \text{ and } \,\,\, \boxed{B(\omega)=\frac{1}{\pi} \int\limits_{-\infty}^\infty f(v)\cdot \sin \omega v\, dv} $$ into a more compact form.
First, substitute the integral expressions for \(A(\omega)\) and \(B(\omega)\) into the integral expression for \(f(x)\) $$ \begin{align} f(x) &= \color{blue}{\int\limits_0^\infty} \left[ A(\omega)\cdot \cos \omega x + B(\omega)\cdot \sin \omega x \right] \color{blue}{d\omega} \\ &= \frac{1}{\pi}\color{blue}{\int\limits_0^\infty} \int\limits_{-\infty}^\infty f(v) \underbrace{\left[ \cos \omega v \cdot \cos \omega x + \sin \omega v \cdot \sin \omega x \right]}_{\cos \alpha \cos \beta + \sin \alpha \sin \beta = \cos\left(\alpha -\beta \right)} \, dv\, \color{blue}{d\omega} \\ &= \frac{1}{\pi}\color{blue}{\int\limits_0^\infty} \int\limits_{-\infty}^\infty f(v) \underbrace{\cos\left( \omega x -\omega v \right)}_{\text{even function of }\omega} \, dv \, \color{blue}{d\omega} \\ &= \frac{1}{2\pi}\color{blue}{\int\limits_{-\infty}^\infty} \int\limits_{-\infty}^\infty f(v) \cos\left( \omega x -\omega v \right) \, dv \, \color{blue}{d\omega} + \underbrace{\frac{1}{2\pi}\color{blue}{\int\limits_{-\infty}^\infty} \int\limits_{-\infty}^\infty f(v) \overbrace{\sin\left( \omega x -\omega v \right)}^{\text{odd function of }\omega} \, dv \, \color{blue}{d\omega}}_{=0} \\ &= \frac{1}{2\pi}\color{blue}{\int\limits_{-\infty}^\infty} \int\limits_{-\infty}^\infty f(v) \cos\left( \omega x -\omega v \right) \, dv \, \color{blue}{d\omega}+ \color{red}{i}\frac{1}{2\pi}\color{blue}{\int\limits_{-\infty}^\infty} \int\limits_{-\infty}^\infty f(v) \sin\left( \omega x -\omega v \right) \, dv \, \color{blue}{d\omega} \\ &= \frac{1}{2\pi}\color{blue}{\int\limits_{-\infty}^\infty} \int\limits_{-\infty}^\infty f(v) \underbrace{\left[\cos\left( \omega x -\omega v \right)+\color{red}{i}\sin\left( \omega x -\omega v \right)\right]}_{e^{\color{red}{i}(\omega x -\omega v)}} \, dv \, \color{blue}{d\omega} \\ &= \frac{1}{2\pi}\color{blue}{\int\limits_{-\infty}^\infty} \int\limits_{-\infty}^\infty f(v) e^{\color{red}{i}(\omega x -\omega v)} \, dv \, \color{blue}{d\omega} \\ &= \frac{1}{\sqrt{2\pi}}\color{blue}{\int\limits_{-\infty}^\infty} \underbrace{\left[ \frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^\infty f(v)e^{-i\omega v}\, dv \right]}_{\hat{f}(\omega)}\, e^{i\omega x}\, \color{blue}{d\omega} \end{align} $$


The goal here is to extend the Fourier series representation of periodic functions \(f(x+p)=f(x)\) with period \(p=2L\) to nonperiodic functions by taking the limit \(\lim\limits_{L\rightarrow \infty} f(x)\) as illustrated in the figure below

MatLab output

First let's recall the Fourier series of a periodic function \(f_L(x+p)=f_L(x)\) with period \(p=2L\) $$ \begin{align} f_L(x)&=a_0+\sum\limits_{n=1}^\infty a_n\cos \left( \frac{n\pi}{L}x \right)+b_n\sin \left( \frac{n\pi}{L}x \right) \\ a_0 &= \frac{1}{2L}\int\limits_{-L}^L f_L(v)dv \\ a_n &= \frac{1}{L}\int\limits_{-L}^L f_L(v)\cdot \cos\left( \frac{n\pi}{L}v \right)dv \\ b_n &= \frac{1}{L}\int\limits_{-L}^L f_L(v)\cdot \sin\left( \frac{n\pi}{L}v \right)dv \end{align} $$ Next, use $$ \omega_n=\frac{n\pi}{L}, \,\,\, \text{ and } \,\,\, \Delta \omega = \omega_{n+1}-\omega_n = \frac{(n+1)\pi}{L}-\frac{n\pi}{L}=\frac{\pi}{L} \,\,\, \text{ which leads to } \,\,\, \frac{1}{L}=\frac{\Delta \omega}{\pi} $$ and substitute the formulas for the coefficients \(\{a_0,\, a_n, \, b_n\}\) back into the Fourier series to get $$ \begin{align} f_L(x) &= \underbrace{\frac{1}{2L}\overbrace{\int\limits_{-L}^L f_L(v)dv}^{\text{finite } \because}}_{\int\limits_{[-L,L]}f_L(v)dv\, \leq \int\limits_{[-L,L]}|f_L(v)|dv \, < \infty}+\sum\limits_{n=1}^\infty \left[ \overbrace{\frac{1}{L}\int\limits_{-L}^L f_L(v)\cdot \cos\left( \frac{n\pi}{L}v \right)dv}^{a_n} \cdot \cos\omega_n x+ \overbrace{\frac{1}{L}\int\limits_{-L}^L f_L(v)\cdot \sin\left( \frac{n\pi}{L}v \right)dv}^{b_n} \cdot \sin\omega_n x\right]\\ &= \frac{1}{2L}\int\limits_{-\infty}^\infty f_L(v)dv+\frac{1}{\pi}\sum\limits_{n=1}^\infty \left[ \left(\cos \omega_n x\right) \Delta\omega \underbrace{\int\limits_{-L}^Lf_L(v)\cos \omega_n v \, dv}_{\text{later becomes part of }A(\omega)} + \left(\sin \omega_n x\right) \Delta\omega \underbrace{\int\limits_{-L}^Lf_L(v)\sin \omega_n v \, dv}_{\text{later becomes part of }B(\omega)} \right] \end{align} $$ Now, take the limit \( L\rightarrow \infty \), hence we write \( \lim\limits_{L\rightarrow \infty} f_L(x)=f(x) \), and note that \( \boxed{\lim\limits_{L\rightarrow \infty} \frac{1}{2L}\int\limits_{-\infty}^\infty f_L(v)dv=0} \) and \( \boxed{\lim\limits_{L\rightarrow \infty} \Delta \omega = d\omega} \). Moreover, since \(n\in \{1,2,3,\ldots\}\) and \(L\rightarrow \infty\), we have \(\boxed{\boxed{\frac{\pi}{L}\leq \omega_n < \infty} \implies \boxed{0\leq \omega < \infty}} \) $$ \begin{align} f(x)= \lim\limits_{L\rightarrow \infty} f_L(x) &= \color{blue}{\lim\limits_{L\rightarrow \infty}} \frac{1}{\pi}\color{blue}{\sum\limits_{n=1}^\infty} \left[ \left(\cos \omega_n x\right) \color{blue}{\Delta\omega} \underbrace{\int\limits_{-L}^Lf_L(v)\cos \omega_n v \, dv}_{\text{later becomes part of }A(\omega)} + \left(\sin \omega_n x\right) \color{blue}{\Delta\omega} \underbrace{\int\limits_{-L}^Lf_L(v)\sin \omega_n v \, dv}_{\text{later becomes part of }B(\omega)} \right] \\ &= \frac{1}{\pi} \color{blue}{\int\limits_0^\infty}\left[ \cos \omega x\cdot \underbrace{\int\limits_{-\infty}^\infty f(v)\cos \omega v\, dv}_{\text{function of } \omega \text{ only}} + \sin \omega x\cdot \underbrace{\int\limits_{-\infty}^\infty f(v)\sin \omega v\, dv}_{\text{function of }\omega\text{ only}} \right]\color{blue}{d\omega} \\ &= \color{blue}{\int\limits_0^\infty} \left[ A(\omega)\cdot \cos \omega x + B(\omega)\cdot \sin \omega x \right] \color{blue}{d\omega} \end{align} $$ Where $$ A(\omega)=\frac{1}{\pi} \int\limits_{-\infty}^\infty f(v)\cdot \cos \omega v\, dv \,\,\, \text{ and } \,\,\, B(\omega)=\frac{1}{\pi} \int\limits_{-\infty}^\infty f(v)\cdot \sin \omega v\, dv $$
The blue sum became blue integral because by the high-school definition of the Riemann integral \(\boxed{ \lim\limits_{\Delta x_{\text{max}}\rightarrow 0}\sum\limits_{n=1}^\infty g(x^*_n)\Delta x_n =\int\limits_a^b g(x)\, dx}\) we get: $$ \color{blue}{ \lim\limits_{L\rightarrow \infty}\sum\limits_{n=1}^\infty g\left( \frac{n\pi}{L} \, x \right) \frac{\pi}{L}= \lim\limits_{L\rightarrow \infty}\sum\limits_{n=1}^\infty g(\omega_n \, x) \Delta \omega = \int\limits_0^\infty g(\omega x)\, d\omega } $$
Example Fourier series and integral for $$ f_L(x)=\begin{cases} 0 & \text{ if } -L< x<-1 \\ |x| & \text{ if } -1\leq x \leq 1 \\ 0 & \text{ if } +1 < x < L \end{cases} \text{ and } f(x+2L)=f(x) \text{ for } L\in\{1,2,4,8,\infty \} $$ and the corresponding spectra \(a_n\) and \(A(\omega)\)
MatLab output


Problems for Chapter 10

Test 1
Mingzuoyang Chen Chris Collins Jon-Michael X Grabowski Chenghao Ji
Ferris Kimmil Chaowei Li Yichun Li Yufan Lu
Brendan McClanahan Deep Patel Devendar Reddy Thallapureddy Kevin Weltzin
Jin Xue Ruihao Yang Yanjun Yao Dong Ye
Zachary Satawa
Don't use decimal approximations. Upload to Black Board. A single b/w pdf


Quiz 3.
Mingzuoyang Chen Chris Collins Jon-Michael X Grabowski Chenghao Ji
Ferris Kimmil Chaowei Li Yichun Li Yufan Lu
Brendan McClanahan Deep Patel Devendar Reddy Thallapureddy Kevin Weltzin
Jin Xue Ruihao Yang Yanjun Yao Dong Ye
Zachary Satawa
Don't use decimal approximations. Upload to Black Board. A single b/w pdf


Quiz 2.
Mingzuoyang Chen Chris Collins Jon-Michael X Grabowski Chenghao Ji
Ferris Kimmil Chaowei Li Yichun Li Yufan Lu
Brendan McClanahan Deep Patel Devendar Reddy Thallapureddy Kevin Weltzin
Jin Xue Ruihao Yang Yanjun Yao Dong Ye
Zachary Satawa
Don't use decimal approximations. Upload to Black Board. A single b/w pdf


Quiz 1.
Mingzuoyang Chen Chris Collins Jon-Michael X Grabowski Chenghao Ji
Ferris Kimmil Chaowei Li Yichun Li Yufan Lu
Brendan McClanahan Deep Patel Devendar Reddy Thallapureddy Kevin Weltzin
Jin Xue Ruihao Yang Yanjun Yao Dong Ye
Zachary Satawa
Don't use decimal approximations. Upload to Black Board. A single b/w pdf


clc; close all; clear;

U=[0:0.1:2*pi];
V=[-pi/2:0.1:pi/2];
[u,v]=meshgrid(U,V); % region in parameter space

x=v.*cos(u);
y=v.*sin(u);
z=v.^2;

surf(x,y,z);
axis image;

homotopy, continuous deformation of surface \(\mathbf{r}_1(u,v)\) to surface \(\mathbf{r}_2(u,v)\) using convex combination $$ \boxed{\mathbf{r}(u,v,t)=(1-t)\mathbf{r}_1(u,v)+ t\mathbf{r}_2(u,v)} \text{ with } 0\leq t \leq 1 $$
clc; close all; clear;

U=[0:0.1:2*pi];
V=[-pi/2:0.1:pi/2];
[u,v]=meshgrid(U,V); % region in parameter space

x=v.*cos(u);
y=v.*sin(u);
z=v;

xx=v.*cos(u);
yy=v.*sin(u);
zz=v.^2;

for t=0:0.01:1
    surf((1-t)*x+t*xx,(1-t)*y+t*yy,(1-t)*z+t*zz);
    axis([-2 2 -2 2 -2 2]);
    drawnow; 
end

Gradient Search computer assignment. Due September 9.
Mingzuoyang Chen Chris Collins Jon-Michael X Grabowski Chenghao Ji
Ferris Kimmil Chaowei Li Yichun Li Yufan Lu
Brendan McClanahan Deep Patel Devendar Reddy Thallapureddy Kevin Weltzin
Jin Xue Ruihao Yang Yanjun Yao Dong Ye
Zachary Satawa
single email with MatLab codes, and explanations. No m$Word or pdf's